• Title/Summary/Keyword: Ocean floater

검색결과 64건 처리시간 0.021초

슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석 (Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects)

  • 김현종;최윤환;이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.617-622
    • /
    • 2013
  • 해양 부유체 내부 유체는 파랑에 의한 외력을 받게 되면 슬로싱(sloshing)이 발생하게 된다. 부유체의 슬로싱에 의한 영향을 해석하기 위해서, 파랑에 의한 부유체의 거동뿐만 아니라 슬로싱에 의한 부유체의 응답을 고려한 결합적인 해석이 필요하다. 전산유체역학(CFD) 해석에 있어서, 외란은 비선형 파랑인 Stokes 5차 이론을 사용했고, 유동 해석은 Navier-Stokes 방정식과 Shear-Stress Transport(SST) 난류 모델을 이용하였다. 해양 부유체는 Pitch, Heave 운동에 대한 2자유도 해석을 진행 하였고, 결과에서는 슬로싱을 포함한 강체 운동을 확인 할 수 있다.

터빈 특성을 고려한 부유식 조류발전장치의 운동성능 고찰 (Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications)

  • 조철희;황수진;박홍재;김명주
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.427-432
    • /
    • 2018
  • Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device. In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater.

Flapping Foil을 적용한 위치유지시스템 개발을 위한 운동시험 (Feasibility Study for Development of New Stationkeeping System)

  • 유영재;심우림;;김동주;신현경
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, experiments with a floater using flapping foils were performed to develop a new station keeping system that can maintain its position in waves without mooring lines. The foils applied to this system generate thrust using wave energy. In this experiment, the motion of the floater was analyzed in three different wave periods. Sixteen foils were attached to the cylindrical floater. The thrust of each foil was controlled by changing its azimuth angle, and three cases were compared. Based on the previous data, we made more precise measurements and found an optimal model for stationkeeping under each wave condition. We verified the potential of this new stationkeeping system using flapping foils, and conclusions were drawn from the results.

15kW-class wave energy converter floater design and structural analysis

  • Singh, Patrick Mark;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.146-151
    • /
    • 2016
  • This study concentrates on the design of floater for 15kW-class wave energy converter that extracts the ocean energy by oscillating vertically along the wave motion. The floater connects to a arm structure that connects to a hydraulic cylinder, which drives a hydraulic generator. The study mainly focuses on the structural analysis of the floater. Previous studies have been conducted using a miniature model; however, this study focuses on the size selection of the floater for a full scale model. Static structural analysis is conducted using fine numerical grids. Due to the complexity of the whole model, it is analyzed as a separate component. There are several load cases for each floater size, and they are analyzed thoroughly for stress (von-mises, shear, and normal) and deformation. The initial design was conducted by scaling up from the miniature model of the previous study, and the final design has been redesigned by changing the thickness and internal support structure shape.

Structural Analysis on the Arm and Floater Structure of a Wave Energy Converter

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.5-11
    • /
    • 2015
  • Ocean waves have huge amounts of energy, even larger than wind or solar, which can be extracted by some mechanical device. This can be done by creating a system of reacting forces, in which two or more bodies move relative to each other, while at least one body interacts with the waves. This moves the floater up and down. The floaters are connected to an arm structure, which are mounted on a fixed hull structure. Hence, the structure of the floater is very important. A static structural analysis with FSI (Fluid-Structure Interaction) analysis is conducted. To achieve the pressure load for the FSI analysis, the floater is simulated on a wave generator using rigid body motion. The structural analysis is done to examine the stresses on the whole system, and four types of flange and floater are optimized. The result shows that the structure of floater with wood support is the safest.

부소파제의 부체 개발을 위한 기초적 실험연구 (A Preliminary Experiment Study for Development of Floater of Floating Breakwater)

  • 정동호;김현주;김진하;문덕수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.102-107
    • /
    • 2004
  • New designed floating breakwater made of Polyethelener with considering the introduction of new material for being harmony with environment and stability of the floater is developed for a marine ranching. Model experiment in order to test its capability is performed for the regular and irregular waves in ocean engineering basin. Good capability to break the incident wave within the 6 second of period and 1 m of height is shown. Breaking efficiency for long period wave is not so good in regular and irregular wave. The results of this study will contribute to the design and construction of the floating breakwater.

  • PDF

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

해양 플로터 상부모듈 지지구조의 설계에 관한 연구 (A Study of the Design for the Topside Module Support Structure of an Offshore Floater)

  • 송명근;장범선;고대은
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.53-58
    • /
    • 2010
  • Offshore floater such as FPSO, drillship is composed of topside and hull side, and the interface structure is called topside module support. In this study, practical considerations were investigated for the design of topside module supports, from the concept design stage to the final stage of structural determination, in view of design efficiency and construction productivity. The effects of welding design factors of topside module support, such as welding throat thickness, sectional welding area, and welding man-hours, were compared and analyzed closely with respect to productivity. The current status and problems regarding the application of deep or full penetration welding are discussed, and a direct-calculation method is suggested as a possible solution to these problems.

탈착형 계류시스템 배치에 따른 부유식 해양구조물의 운동 및 계류성능에 관한 연구 (A Study on the Global Motion Performance of Floater and Mooring Due to Arrangement of Detachable Mooring System)

  • 이강수;김현성;김병완
    • 풍력에너지저널
    • /
    • 제14권2호
    • /
    • pp.26-33
    • /
    • 2023
  • In this study, the global response characteristics of floater and mooring for floating offshore wind turbine with a detachable mooring system are performed. Global motion and structural response result extracted from the coupled motion analysis of 10MW DTU floating offshore wind turbine with detachable mooring system modeled by high-order boundary element model and finite element mesh, were used to study the characteristics of tension on mooring lines subjected to three different types of ocean loads. Breaking limit of mooring line characterized by wind, current and wave load has a major effect on the distribution of mooring tension found in time domain analysis. Based on the numerical results of coupled motion analysis, governing equation for calculating the motion response of a floater under ocean loads, and excitation force and surge motion and tension respectively are presented using excursion curve. It is found that the response of floater is reliable and accurate for calculating the tension distributions along the mooring lines under complex loadings. This means that the minimun breaking limit of mooring system satisfied a design criteria at ultimate ocean environmental loading condtions.

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.