• Title/Summary/Keyword: Ocean energy

Search Result 2,458, Processing Time 0.027 seconds

Comparison of Maximum Horizontal Wave Force Acting on Perforated Caisson Breakwater with Single and Double Chamber (단일 및 이중유수실 유공케이슨 방파제에 작용하는 최대 수평파력 비교)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young Min;Jang, Se-Chul;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.335-341
    • /
    • 2014
  • Physical experiments were carried out to measure the wave force on the vertical walls of perforated breakwater considering several phases of a wave acting on the breakwater. The maximum horizontal wave force acting on each vertical wall was compared between single and double chamber caisson breakwater. The experimental data in this study showed that the total horizontal wave force for double chamber caisson was 9.6% smaller on average than that for single chamber caisson when the total chamber width was the same for both caissons. Such reduction of the wave force is due to the dissipation of wave energy at the porous middle wall, which is located between the porous front wall and non-porous rear wall.

Damage of Steel Composite Hollow RC SFT under Fires (강합성 중공 RC 해중터널의 화재시 손상도 분석)

  • Seo, JiHye;Han, Taek Hee;Han, Sang Hun;Park, Woo-Sun;Won, Deok Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4626-4633
    • /
    • 2014
  • The research is being conducted on a SFT (Submerged Floating Tunnel), because of increased exchange among nations and abnormal weather-disasters and new transportation infrastructure has attracted interest. However, studies in this are almost in the early stages around the world and various researches will be needed to promote the safety form the disaster. In this paper, heat transfer analysis was applied among the structural performance evaluation of a SFT if afire occurs in the tunnel. The analysis model of the SFT was performed as steel composite RC hollow. The impact of heat by fire under a range of fire scenarios was analyzed and prevention techniques were examined.

Text Mining Analysis on the Research Field of the Coastal and Ocean Engineering Based on the SCOPUS Bibliographic Information (해안해양공학 연구 분야의 SCOPUS 서지정보 Text Mining 분석)

  • Lee, Gi Seop;Cho, Hong Yeon;Han, Jae Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • Numerous research papers have been accumulated due to the development and computerization of bibliometrics. This made it difficult to review all of the related papers published worldwide to conduct the study. However, due to the development of Natural language processing techniques, the tendency analysis of published research papers has become easier. In this study, text mining analysis using the statistical computing language R was carried out based on the bibliographic information of SCOPUS DB (Data Base) in the field of coastal and ocean engineering. As expected, the term 'wave' predominates, and it was confirmed that numerical analysis and hydraulic experiments were still dominant from the terms 'numerical model', 'numerical simulation', and 'experimental study'. In addition, recent use of the term 'wave energy' related to marine energy has been recognized. On the other hand, it was quantitatively confirmed that the frequency of connection between 'wave', and 'height' or 'energy' prevailed, and suggested the possibility of high resolution analysis by detailed field and period in the future.

Numerical Analysis of Wave Field in OWC Chamber Using VOF Model

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Recently Oscillating Water Column (OWC) plants have been widely employed in wave energy conversion applications. It is necessary to investigate the chamber and optimize its shape parameters for maximizing air flow and energy conversion due to wave conditions. A 2D numerical wave tank based on a Fluent and VOF model is developed to generate the incident waves and is validated by theoretical solutions. The oscillating water column motion in the chamber predicted by the numerical method is compared with the available experimental data. Several geometric scales of the chamber are calculated to investigate the effect of the shape parameters on the oscillating water column motion and wave energy conversion.

Oscillating Water Column (OWC) Wave Energy Converter Part 1: Fixed OWC

  • Yang, Hyunjai;Jung, Hyen-Cheol;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.280-294
    • /
    • 2022
  • This study reviews the recent development and research results of a fixed oscillating water column (OWC) wave energy converter (WEC). The OWC WEC can be divided into fixed and floating types based on the installation location and movement of the structure. In this article, the study on a stationary OWC WEC, which is close to commercialization through the accumulation of long-term research achievements, is divided into five research categories with a focus on primary energy conversion research. These research categories include potential-flow-based numerical analysis, wave tank experiments, computational fluid dynamics analyses toward investigation of fluid viscous effects, U-shaped OWC studies that can amplify water surface displacement in the OWC chamber, and studies on OWC prototypes that have been installed and operated in real sea environments. This review will provide an overview of recent research on the stationary OWC WEC and basic information for further detailed studies on the OWC.

A study on market predictions of eco ship's engine and machinery

  • Lee, Kang Ki;Doh, Deog Hee;Kim, Ue Kan;Moon, Hyun Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1354-1359
    • /
    • 2014
  • A survey is carried out for the future energy sources to be used for ship's propulsion and ship's machinery and operations. 44 global experts from Korea, America, Norway, Denmark, Japan and German who are currently working in the shipyard and offshore fields participated at the survey. Quantitative predications on the market shares of various energy sources, such as oil, LNG, fuel cell, wind energy, solar energy and nuclear energy are made. MPI (market prediction index) is considered as a quantitative index for easy comparison between future's energy sources used for ship's propulsion and operations. It is expected that the MPI of LNG becomes twofold in 2020 against 'before 2016'. It could be also said that hydrogen based fuel cell is expected to increase rapidly for the coming years unless a new alternative energy appears.

Wave Energy Distribution at Jeju Sea and Investigation of Optimal Sites for Wave Power Generation (파력발전 적지 선정을 위한 제주 해역 파랑에너지 분포특성 연구)

  • HONG KEY-YONG;RYU HWANG-JIN;SHIN SEUNG-HO;HONG SEOK-WON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.8-15
    • /
    • 2004
  • Wave power distribution is investigated to determine the optimal sites for wave power generation at Jeju sea which has the highest wave energy density in the Korean coastal waters. The spatial and seasonal variation of wave power per unit length is calculated in the Jeju sea area based on the monthly mean wave data from 1979 to 2002 which is produced by the SWAN wave model simulation in prior research. The selected favorable locations for wave power generation are compared in terms of magnitude of wave energy density and distribution characteristics of wave parameters. The results suggest that Chagui-Do is the most optimal site for wave power generation in the Jeju sea. The seasonal distribution of wave energy density reveals that the highest wave energy density occurs in the northwest sea in the winter and it is dominated by wind waves, while the second highest one happens at south sea in the summer and it is dominated by a swell sea. The annual average of wave energy density shows that it gradually increases from east to west of the Jeju sea. At Chagui-Do, the energy density of the sea swell sea is relatively uniform while the energy density of the wind waves is variable and strong in the winter.

A study on the Estimation of Significant Wave Height based on Ocean Wave Observation Data (해양파 관측자료에 기반한 유의파고 추정에 관한 고찰)

  • Kim, Jeong-Seok;Shin, Seung-Ho;Choi, Jong-Su;Hong, Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.197-198
    • /
    • 2018
  • In recent years, diversified demand for marine utilization has been increasing not only through the development projects for the utilization of the conventional coastal zone but also by the development of marine leisure sports and marine energy. It is very important to understand the characteristics of blue for safe and economical utilization of the ocean. Using the observed wave data, we derive the wave parameters to represent the irregular sea state proposed in the previous studies and examine the relationship between them to confirm the characteristics of the ocean wave.

  • PDF

Computational Analysis of KCS Model with an Equalizing Duct

  • Ng'aru, Joseph Mwangi;Park, Sunho;Hyun, Beom-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2021
  • In order to minimize carbon emissions and greenhouse gas, the Energy Efficiency Design Index (EEDI) has become a major factor to be considered in recent years in a ship's design and operation phases. Energy-Saving Devices (ESDs) improve the EEDI of a vessel and make them environmentally friendly. In this research, the performance of an equalizing duct-type ESD installed upstream of a Korea Research Institute of Ships & Ocean Engineering (KRISO) Container Ship (KCS) model's propeller was investigated by computational fluid dynamics (CFD). Open-source CFD libraries, OpenFOAM, were used for computational analysis of the KCS with and without the ESD to verify the performance improvement. The flow field near the stern region and propulsive coefficients were considered for comparison. The results showed a considerable improvement when an ESD was used on the model. Using different sizes of the duct, the performance of the ESD was also compared. It was observed that with an increased duct size, the propulsive performance was improved.

A Study on Energy Extraction from Tidal Currents

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.79-79
    • /
    • 2011
  • The oceans are an untapped resource, capable of making a major contribution to our future energy needs. In the search for a non polluting renewable energy source, there is a push to find an economical way to harness energy from the ocean. Tidal stream is one of ocean energy form that is being investigated as potential source for power generation. Tidal current turbines are therefore designed as conversion machinery to generate power from tidal currents. A study on energy extraction from tidal currents is presented in this paper.

  • PDF