• 제목/요약/키워드: Ocean color satellite

검색결과 228건 처리시간 0.027초

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

DEVELOPMENT OF ON-BOARD SOFTWARE FOR COMS GEOSTATIONARY OCEAN COLOR IMAGER

  • Park, Su-Hyun;Koo, Cheol-Hae;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Seong-Bong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.257-259
    • /
    • 2006
  • The Communication Ocean Meteorological Satellite (COMS) is a geostationary satellite being developed by Korea Aerospace Research Institute. Geostationary Ocean Color Imager (GOCI) is one of the payloads embarked on the COMS satellite. It acquires ocean images around Korea in 8 visible spectral bands with a spatial resolution of about 500 m. The acquired data are used to provide forecasting and now casting of the ocean state. The GOCI operations are controlled by the satellite embedded software, i.e. on-board software. This paper introduces the GOCI payload of the COMS satellite and describes the control software for the GOCI.

  • PDF

Ocean Color Monitoring of Coastal Environments in the Asian Waters

  • Tang, Danling;Kawamura, Hiroshi
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.154-159
    • /
    • 2002
  • Satellite remote sensing technology for ocean observation has evolved considerably in these last twenty years. Ocean color is one of the most important parameters of ocean satellite measurements. This paper describes a remote sensing of ocean color data project - Asian I-Lac Project; it also introduces several case studies using satellite images in the Asian waters. The Asian waters are related to about 30 Asian countries, representing about 60% of the world population. The project aims at generating long-term time series images (planned for 10 years from 1996 to 2006) by combining several ocean color satellite data, i.e., ADEOS-I OCTS and SeaWiFS, and some other sensors. Some typical parameters that could be measured include Chlorophyll- a (Chl-a), Colored Dissolved Organic Matter (CDOM), and Suspended Material (SSM). Reprocessed OCTS images display spatial variation of Chl-a, CDOM, and SSM in the Asian waters; a short term variability of phytoplankton blooms was observed in the Gulf of Oman in November 1996 by analyzing OCTS and NOAA sea surface temperature (SST); Chl-a concentrations derived from OCTS and SeaWiFS have also been evaluated in coastal areas of the Taiwan Strait, the Gulf of Thailand, the northeast Arabian Sea, and the Japan Sea. The data system provides scientists with capability of testing or developing ocean color algorithms, and transferring images for their research. We have also analyzed availability of OCTS images. The results demonstrate the potential of long-term time series of satellite ocean color data for research in marine biology, and ocean studies. The case studies show multiple applications of satellite images on monitoring of coastal environments in the Asian Waters.

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

A Modulation Transfer Function Compensation for the Geostationary Ocean Color Imager (GOCI) Based on the Wiener Filter

  • Oh, Eunsong;Ahn, Ki-Beom;Cho, Seongick;Ryu, Joo-Hyung
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권4호
    • /
    • pp.321-326
    • /
    • 2013
  • The modulation transfer function (MTF) is a widely used indicator in assessments of remote-sensing image quality. This MTF method is also used to restore information to a standard value to compensate for image degradation caused by atmospheric or satellite jitter effects. In this study, we evaluated MTF values as an image quality indicator for the Geostationary Ocean Color Imager (GOCI). GOCI was launched in 2010 to monitor the ocean and coastal areas of the Korean peninsula. We evaluated in-orbit MTF value based on the GOCI image having a 500-m spatial resolution in the first time. The pulse method was selected to estimate a point spread function (PSF) with an optimal natural target such as a Seamangeum Seawall. Finally, image restoration was performed with a Wiener filter (WF) to calculate the PSF value required for the optimal regularization parameter. After application of the WF to the target image, MTF value is improved 35.06%, and the compensated image shows more sharpness comparing with the original image.

정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스 (Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data)

  • 양찬수;배상수;한희정;안유환;유주형;한태현;유홍룡
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.263-275
    • /
    • 2010
  • 정지궤도 해색탑재체(GOCI, Geostationary Ocean Color Imager)의 주관 운영기관인 해양위성센터 (KOSC, Korea Ocean Satellite Center)는 한국해양연구원에 기반시설을 구축하였다. 또한, 해양위성센터는 수신시스템(GDAS), 전처리시스템(IMPS), 처리시스템(GDPS), 배포시스템(GDDS), 자료교환시스템(DMS), 기관간 자료교환시스템(EDES), 통합감시제어시스템(TMC) 등 GOCI 데이터의 서비스를 위한 준비를 완료하였다. 해양위성센 터에서는 매일 8번 관측되는 GOCI 데이터를 수신하고, 처리하여 배포정책에 따라 Level 1B 이후의 데이터를 사용자에게 배포하게 된다. 여기서는 해양위성센터의 시스템과 배포정책에 대한 개요를 설명하고, 사용자가 해양위성센터의 홈페이지에서 GOCI 데이터를 검색 요청하고 다운로드할 수 있는 방법을 소개한다.

인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교 (Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea)

  • 박지은;박경애
    • 한국해양학회지:바다
    • /
    • 제24권2호
    • /
    • pp.282-297
    • /
    • 2019
  • 인공위성 자료를 활용한 중규모 소용돌이 탐지에는 해수면온도, 식물플랑크톤 클로로필-a 색소 농도, 해수면고도 등 다양한 해양 변수를 활용할 수 있다. 각 위성 해양 자료는 시 공간 해상도, 관측 방식 및 자료 처리 과정이 상이하기 때문에, 동일한 소용돌이에 대해서도 다른 탐지 결과를 유도할 수 있어, 인공위성 자료를 활용한 소용돌이 탐지에 대한 기초 연구가 필요하다. 본 연구에서는 해색 위성 자료, 위성 고도계 해수면고도 자료, 적외선 해수면온도 자료를 활용하여 동해 중규모 소용돌이를 탐지하고 그 결과를 상호 비교하였다. 연속된 해색 위성 클로로필-a 농도 영상으로부터 최대 상호 상관 계수를 통하여 산출한 표층 해류장과, 위성 고도계의 해수면고도 영상 자료로부터 산출한 지형류를 활용하여 동해 중규모 소용돌이를 탐지하였다. 소용돌이 탐지 결과를 상호 비교하기 위하여 1) 해색 영상과 고도계 영상이 동시에 소용돌이를 탐지한 경우, 2) 해색 영상과 해수면온도 영상에는 존재하나 고도계 자료는 탐지하지 못한 경우, 3) 해색 영상과 해수면온도 영상에는 소용돌이가 존재하지 않으나 고도계 자료에서는 존재하는 경우 등 세 가지 사례를 선택하였다. 이와 같은 세 가지 사례를 통하여 동해 중규모 소용돌이 탐지 시 인공위성 고도계 자료의 문제점 제기와 더불어, 해색 위성 자료와 적외선 해수면온도 자료의 한계점을 제시하였다. 또한 해양 현상과 인공위성 관측 원리에 대한 깊이 있는 이해를 기반으로 소용돌이 탐지 및 관련 연구가 진행되어야 함을 강조하였다.

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF