• 제목/요약/키워드: Ocean color remote sensing

검색결과 216건 처리시간 0.027초

Ocean Color Monitoring of Coastal Environments in the Asian Waters

  • Tang, Danling;Kawamura, Hiroshi
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.154-159
    • /
    • 2002
  • Satellite remote sensing technology for ocean observation has evolved considerably in these last twenty years. Ocean color is one of the most important parameters of ocean satellite measurements. This paper describes a remote sensing of ocean color data project - Asian I-Lac Project; it also introduces several case studies using satellite images in the Asian waters. The Asian waters are related to about 30 Asian countries, representing about 60% of the world population. The project aims at generating long-term time series images (planned for 10 years from 1996 to 2006) by combining several ocean color satellite data, i.e., ADEOS-I OCTS and SeaWiFS, and some other sensors. Some typical parameters that could be measured include Chlorophyll- a (Chl-a), Colored Dissolved Organic Matter (CDOM), and Suspended Material (SSM). Reprocessed OCTS images display spatial variation of Chl-a, CDOM, and SSM in the Asian waters; a short term variability of phytoplankton blooms was observed in the Gulf of Oman in November 1996 by analyzing OCTS and NOAA sea surface temperature (SST); Chl-a concentrations derived from OCTS and SeaWiFS have also been evaluated in coastal areas of the Taiwan Strait, the Gulf of Thailand, the northeast Arabian Sea, and the Japan Sea. The data system provides scientists with capability of testing or developing ocean color algorithms, and transferring images for their research. We have also analyzed availability of OCTS images. The results demonstrate the potential of long-term time series of satellite ocean color data for research in marine biology, and ocean studies. The case studies show multiple applications of satellite images on monitoring of coastal environments in the Asian Waters.

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

MODIS 해색 자료의 유효관측영역 확장에 대한 연구 (A Study on Extending Successive Observation Coverage of MODIS Ocean Color Product)

  • 박정원;김현철;박경석;이상환
    • 대한원격탐사학회지
    • /
    • 제31권6호
    • /
    • pp.513-521
    • /
    • 2015
  • 해색 원격탐사 자료의 처리과정에서는 일반적으로 관측 영역의 확보를 위해 시공간적 합성을 수행하며, 이 때 Level-2 flag를 참조하여 합성 재료가 되는 영상의 유효성을 판단한다. NASA OBPG의 표준 알고리즘은 stray light에 의한 관측 오차를 최소화하기 위해서 필터링 윈도우를 채택하고 있으나, 이로 인한 관측 영역의 손실이 많다. 이 연구는 유효 관측 영역의 복원/확장을 통한 해색 원격탐사 자료의 품질 향상에 목적을 둔다. 이를 위해서 MODIS/Aqua의 필터링 윈도우의 크기 변화에 따른 관측 영역과 클로로필a 농도 측정값의 변화를 분석하였다. 그 결과 유효 관측 영역에 있어 Level-2 swath 자료, Level-3 일별 합성자료, 8일 합성자료, 월별 합성자료에서 각각 $13.2({\pm}5.2)%$, $30.8({\pm}16.3)%$, $15.8({\pm}9.2)%$, $6.0({\pm}5.6)%$의 복원 효과가 발생하였으며, 표준 자료와의 측정값 차이는 공통 관측 영역에서 평균 0.012% 이하로 매우 유의하였다. 또한 공간 영역 확장으로 인해 시계열 자료에서의 관측 밀도도 상승하였으며 그 이득은 8일 합성자료에서 가장 크게 나타났다. 제안 방법을 통한 유효 영역의 확장은 자료 생산의 효율성뿐만 아니라 자료 분석의 통계적 신뢰성 확보의 측면에서도 해색 원격탐사 자료의 품질 향상에 기여할 수 있다.

Comparison of CZCS and SeaWiFS Pigments for Merging the Higher Level Ocean Color Data

  • Jeong, Jong-Chul;Yoo, Shin-Jae
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.299-303
    • /
    • 2002
  • Many ocean color sensors are being operated at present and will be continued to operatein the coming years. However, these ocean color sensors have different spectral bands locations and higher level product algorithms. Thus the continuity of ocean color data from the satellite with different missions will be important for monitoring of oceanographic variation with long term research. In this study, CZCS band and algorithm are compared with OCTS and SeaWiFS algorithm for estimating chlorophyll. Missing bands of OCTS and CZCS for chlorophyll algorithm are estimated by linear-interpolation using SeaWiFS data. We were able to evaluate the effectiveness of the correction methods using linear interpolation method. Surprisingly, linear interpolation gave a better result than those of other bands.

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Lee, Sun-Gu;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.209-215
    • /
    • 2002
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we compare the OSMI level-2 products (e.g., chlorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. We will present the preliminary results of this comparative study.

  • PDF

해색 원격탐사를 위한 원격반사도 및 수출광 모델의 개발 (Development of Remote Sensing Reflectance and Water Leaving Radiance Models for Ocean Color Remote Sensing Technique)

  • 안유환
    • 대한원격탐사학회지
    • /
    • 제16권3호
    • /
    • pp.243-260
    • /
    • 2000
  • 가시광 영역에서 해수의 원격반사($R_{rs}$)도 및 수출광(water leaving radiance: Lw) 스펙트럼 크기를 해수의 광 특성(흡광도; a, 역산란; $b_b$)에 영향을 가장 크게 미치는 3개 물질 즉, 클로로필, 무기성 부유입자, 용해유기물의 량으로 모델링 하였다. 모델은 간략하게 $R_{rs}$=0.046 $b_b$/(a+$b_b$)로 주어졌으며, 모델의 대상 해역은 광특성이 전혀 다른 적조 발생해역, 맑은 해수, 탁수해역으로 나우어 연구하였다. 모델로 얻어진 원격반사도는 형장 관측치와 스펙트럼의 모양, 값의 분포 및 기존의 해색 클로로필 알고리즘 등으로 비교하여 모델의 타당성을 검증하였다. 결과는 아주 다양한 광 특성을 같은 해양이라 하여도 본 연구의 모델은 거의 완벽하게 해색 스펙트럼, 원격반사도 혹은 water leaving radiance(Lw)를 재현할 수 있는 것으로 나타났다. 본 모델은 앞으로 OSMI와 같은 해색위성 알고리즘 개발, CASE-II water 알고리즘, neural network 알고리즘 개발에 크게 기여할 것으로 사료되며 그 외에도 해색 대기보정 모델 개발에서 대기 신호의 정밀 보정에 활용될 수 있을 것으로 기대된다.

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • 대한원격탐사학회지
    • /
    • 제21권3호
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

정지궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발 (Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI))

  • 문정언;안유환;유주형
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.189-207
    • /
    • 2010
  • GOCI(정지궤도 해색센서) 해수환경분석 알고리즘들은 해양 광 특성 현장관측 자료들을 이용하여 개발되었다. 사용된 자료는 1998년부터 2009년까지 한반도 주변 해역에서 총 1348개 정점에서 얻어진 엽록소 농도(Chl-a), 부유물 농도(SS), 용존유기물의 흡광계수($a_{dom}$), 원격반사도($R_{rs}$) 현장자료들이다. GOCI 엽록소 농도 산출 알고리즘(GOCI Chl-a)은 부유물과 용존유기물의 영향을 모두 고려하고 네 개의 원격반사도 밴드비를 이용하여 개발하였다. GOCI Chl-a 알고리즘은 다른 알고리즘들보다 현장관측자료에 근사한 엽록소 농도 값을 산출하였다. SeaWiFS 영상자료에서 GOCI Chl-a 알고리즘은 SeaWiFS 표준 엽록소 산출 알고리즘들보다 평균 46 % 정도 보정된 엽록소 농도 값을 산출하였다. GOCI 부유물 농도 산출 알고리즘(GOCI SS)은 보편적인 두 개의 원격반사도 밴드비를 사용하지 않고, Ahn et al.(2001)의 원격반사도 단일밴드 방법을 사용하여 개발하였다. GOCI 용존유기물 산출 알고리즘(GOCI $a_{dom}$)은 원격반사도 밴드비 $R_{rs}(412)/R_{rs}(555)$$a_{dom}(\lambda)$)의 상관관계를 이용하여 개발하였다. GOCI 엽록소 형광 알고리즘과 GOCI 적조분석 알고리즘은 Ahn and Shanmugam(2007)와 Ahn and Shanmugam(2006)의 연구들에 의해 각각 개발되었다. 2010년 6월경에 GOCI의 성공적인 발사가 이루어지면 추후 GOCI 자료의 검보정 연구를 통해 개발된 알고리즘들의 문제점을 분석하고, 한반도 주변 해역의 해양 광 특성 현장자료의 지속적인 업데이트를 통한 알고리즘들의 개선작업이 이루어질 것이다.