• Title/Summary/Keyword: Ocean Wave Model

Search Result 1,193, Processing Time 0.031 seconds

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

Attenuation Characterization of L(0,2) Guided Wave Mode through Numerical Analyses and Model Experiments with Buried Steel Pipe (수치해석과 모형실험을 통한 매립배관에서의 유도초음파 L(0,2) 모드의 감쇠 특성 평가)

  • Lee, Juwon;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • By carrying out numerical analyses and model experiments, this paper presents the attenuation characterization of an L(0,2) guided ultrasonic wave propagating in a buried steel pipe. From this investigation, we first find that the L(0,2) mode has a better attenuation property. Second, it is shown from the numerical analyses that the attenuation increases with increases in the soil embedment length (0, 500, 1000, and 1500 mm) and degrees of saturation (0, 50, 99, and 100%). Third, it is also shown from the model experiment that the attenuation increases as the embedment lengths and soil moisture quantities (0, 10, 20, and 30 kg) increase. Finally, we find that an exponential extrapolation gives a better attenuation prediction because the extrapolation gives similar attenuation patterns between the numerical and experimental results.

Forward Speeds and Turning Trajectories of a KSUPRAMAX Model Ship in Long-Crested Irregular and Equivalent Regular Waves (KSUPRAMAX 모형선의 장파정 불규칙파 중 전진속도 및 선회궤적을 유사 재현하는 규칙파 탐색)

  • Dong-Jin Kim;Kunhang Yun;Chang-Seop Kwon;Yeon-Gyu Kim;Seung-Hyun Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.258-266
    • /
    • 2024
  • It is necessary to predict the ship's manoeuvrabilities in waves for its safe operations in adverse weather. At the early design stage, free-running model tests can be performed to estimate the ship's manoeuvring performance in irregular wave conditions. The wave elevations are randomly varied with times in irregular waves, large deviations of the manoeuvring performance indices are likely to occur depending on the start time of steering scenarios. In this study, a KSUPRAMAX model ship's manoeuvres in long-crested irregular waves are reproduced in the equivalent regular waves. The equivalent regular waves are searched from the energy flux relations between long-crested irregular and regular waves. But there are differences of forward speeds in the model tests, regular wave height and period are modified so that both the forward speed and the trajectory drift in regular waves are similar to those in irregular waves. In addition, low speed course-keeping tests are performed with various wave incident angles in irregular and regular waves. It is confirmed that check helms, drift angles, and speeds as well as trajectories in irregular waves are similar to those in equivalent regular waves.

Study on Effect of Wave Control by Multi-Cylinder Piles Using Delft-3D Hydrodynamic Model (Delft-3D Model을 이용한 다원주 군파일의 파랑제어 효과에 관한 연구)

  • Lee, Snag-Hwa;Jang, Ean-Chul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • In order to effectively control waves in a coastal zone, Multi-Cylinder Piles have been suggested as economic structures. A numerical analysis was conducted using the Delft-3D: WAVE module based on SWAN, which considered wave shoaling and refraction. Moreover, irregular waves were used to investigate the hydrodynamic characteristics of the wave interaction with the structure. In this paper, a numerical analysis was carried out to research the effect of wave control through a wave height analysis concerning an existing, concrete wave breaker and multi-cylinder piles placed at the same location. As a result, the effect of the wave control is shown using the wave breaker, multi-cylinder piles, and existing data.

Shallow-water Design Waves at Gangreung Beach through the Analysis of Long-term Measured Wave Data and Numerical Simulation Using Deepwater Wave Conditions (장기 파랑관측자료 분석 및 천해파 수치실험에 의한 강릉 해역의 천해설계파)

  • Jeong, Weon Mu;Jun, Ki Cheon;Kim, Gunwoo;Oh, Sang-Ho;Ryu, Kyong-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.343-351
    • /
    • 2012
  • In this study, shallow-water design waves are calculated for the return period of 10, 20, 30, and 50 years, based on the extreme value analysis of the wave measurement data at Gangneung beach. These values are compared with the results of SWAN simulation with the boundary condition of the deep-water design waves of the corresponding return periods at the Gangneung sea area provided by the Fisheries Agency (FA, 1988) and Korea Ocean Research & Development Institute (KORDI, 2005). It is found that the shallow-water wave heights at Gangneung beach calculated by the deep-water design waves were significantly less than the observation data. As the return period becomes higher, the significant wave heights obtained by the extreme value analysis becomes higher than those computed by SWAN with the deep-water design waves of the corresponding return periods. KORDI computed the hindcast wave data from January 2004 to August 2008 by WAM with a finer-grid mesh system than those of previous studies. Comparisons of the wave hindcast results with the wave observation show that the reproducibility of the winter-season storm wave was considerably improved compared to the hindcast data from 1979 to 2003. Hereafter, it is necessary to carry out hindcast wave data for the years before 2004 using WAM with the finer-grid mesh system and to supplement the deep-water design wave.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Application of Iterative Procedure to the wave Field with Energy Dissipation Area (에너지 감쇠역을 포함하는 파랑장에 대한 반복기법의 적용)

  • 윤종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 1998
  • An Elliptic model for calculating the combined refraction/diffraction of monochromatic linear waves is developed, including a term which allows for the dissipation of wave energy. Conjugate gradient method is employed as a solution technique. Wave height variations are calculated for localized circular and rectangular dissipation areas. It is shown that the numerical results agree very well with analytical solution in the case of circular damping region. The localized dissipation area creates a shadow region of low wave energy and the recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

Shallow Water Waves around Tokdo (독도 인근해역에서의 천해파)

  • 황연호;전인식;오병철;심재설
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.117-121
    • /
    • 2001
  • For the effective development or preservation of Tokdo, the natural environments in the ambient sea area should be well investigated. The wave deformations and wave breaking in the vicinity have much affected the bottom morphology of Tokdo as well as its ecological environment. The present study investigates the wave deformations and wave breaking through a numerical model. The final goal is to provide the fundamental wave data for the effective development or preservation of Tokdo in future. The extended mild slope equation was applied to Tokdo sea area for three different deep water wave conditions (S, SSE, NNE directions). The results showed that for the S and SSE directions the wave heights in the area between the east island and the west island were very low with the level of 1~2m, but for the NNE direction they appeared pretty high with 3~4m, In the sea area near the northwest of west island, the wave heights were low to be 1~3m for all three directions of deep water wave.

  • PDF