• Title/Summary/Keyword: Ocean Wave

Search Result 3,105, Processing Time 0.026 seconds

The Application of FBNWT in Wave Overtopping Analysis

  • Liu, Zhen;Jin, Ji-Yuan;Hyun, Beom-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A 2-D Fluent-based numerical wave tank(FBNWT) capable of simulating wave propagating and overtopping is presented. The FBNWT model is based on the Reynolds averaged Naiver-Stokes equations and VOF free surface tracking method. The piston wave maker system is realized by dynamic mesh technology(DMT) and user defined function(UDF). The non-iteration time advancement(NITA) PISO algorithm is employed for the velocity and pressure coupling. The FBNWT numerical solutions of linear wave propagation have been validated by analytical solutions. Several overtopping problems are simulated and the prediction results show good agreements with the experimental data, which demonstrates that the present model can be utilized in the corresponding analysis.

Numerical Analysis of Wave Field in OWC Chamber Using VOF Model

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Recently Oscillating Water Column (OWC) plants have been widely employed in wave energy conversion applications. It is necessary to investigate the chamber and optimize its shape parameters for maximizing air flow and energy conversion due to wave conditions. A 2D numerical wave tank based on a Fluent and VOF model is developed to generate the incident waves and is validated by theoretical solutions. The oscillating water column motion in the chamber predicted by the numerical method is compared with the available experimental data. Several geometric scales of the chamber are calculated to investigate the effect of the shape parameters on the oscillating water column motion and wave energy conversion.

Frequency analysis of wave run-up on vertical cylinder in transitional water depth

  • Deng, Yanfei;Yang, Jianmin;Xiao, Longfei;Shen, Yugao
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.201-213
    • /
    • 2014
  • Wave run-up is an important issue in offshore engineering, which is tightly related to the loads on the marine structures. In this study, a series of physical experiments have been performed to investigate the wave run-up around a vertical cylinder in transitional water depth. The wave run-ups of regular waves, irregular waves and focused waves have been presented and the characteristics in frequency domain have been investigated with the FFT and wavelet transform methods. This study focuses on the nonlinear features of the wave run-up and the interaction between the wave run-up and the cylinder. The results show that the nonlinear interaction between the waves and the structures might result wave run-up components of higher frequencies. The wave run-ups of the moderate irregular waves exhibit 2nd order nonlinear characteristics. For the focused waves, the incident waves are of strong nonlinearity and the wavelet coherence analysis reveals that the wave run-up at focal moment contains combined contributions from almost all the frequency components of the focused wave sequence and the contributions of frequency components up to 4th order harmonic levels are recommended to be included.

Development of a Wave Monitoring System Using a Marine Radar (항해용 레이더를 이용한 파랑 모니터링 시스템 개발)

  • PARK JUN-SOO;PARK SEUNG-GEUN;KWON SUN-HONG;PARK GUN-IL;CHOI JAE-WOONG;KANG YUN-TAE;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.37-42
    • /
    • 2006
  • In the ocean engineering field, information about the ocean environment is important for planning, design, and operation, especially the wave information. High precision wave data is also important for considering environmental problems, like efficient operation of ships. For this purpose, many methods were considered in the past. However, an on-board directing wave measurement system has not been incorporated. The use of conventional marine radar Plane Position Indicator (PPI) images allows the estimation of wave information on a real-time basis, using both space and time information, regarding the evolution of ocean surface waves. In order to achieve data acquisition, the Radar Scan Converter (RSC) has been developed. Three-dimensional analysis was performed. The comparison of wave information derived from this system, and that of wave buoy, shows that this wave field detecting system can be a useful tool.

Wave Data Analysis for Investigation of Freak wave Characteristics (Freak Wave 특성 파악을 위한 파랑관측 자료의 분석)

  • Shin, Seung-Ho;Hong, Key-Yong;Moon, Jae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.471-478
    • /
    • 2007
  • This study is carried out the investigation of nonlinear characteristics of the field wave observation data acquired in the western sea area in Jeju island during one year. It is aimed to offer the fundamental data for Freak wave forecasting in real sea. For this, the nonlinear parameters of ocean waves, which are Skewness, Atiltness, Kurtosis and Spectrum band width parameter et al., are introduced, and the parameters are compared and discussed with some characteristics wave components, ie, significant wave height, maximum wave height, and so on. As a results, we know that the parameters describe nonlinear characteristics of observed wave spectrum broadly, are feebly related with occurrence of abnormal maximum wave height, namely freak event, however the Kurtosis, $K_t$ which is a degree of peakness of mode of surface elevation distribution, has better relationship than others.

Experimental study on multi-level overtopping wave energy convertor under regular wave conditions

  • Liu, Zhen;Han, Zhi;Shi, Hongda;Yang, Wanchang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.651-659
    • /
    • 2018
  • A multi-level overtopping wave energy converter was designed according to the large tidal range and small wave heights in China. It consists of two reservoirs with sloping walls at different levels. The reservoirs share a common outflow duct and a low-head axial turbine. The experimental study was carried out in a laboratory wave-flume to investigate the overtopping performance of the device. The depth-gauges were used to measure the variation of the water level in the reservoirs. The data was processed to derive the time-averaged overtopping discharges. It was found that the lower reservoir can store wave waters at the low water level and break the waves which try to climb up to the upper reservoir. The upper sloping angle and the opening width of the lower reservoir both have significant effects on the overtopping discharges, which can provide more information to the design and optimization of this type of device.

Study on Wave Run-Up Phenomenon over Vertical Cylinder (실린더 형상에 따른 Wave Run-up 현상에 대한 연구)

  • Lee, Sang Beom;Han, Seung Yoon;Choi, Young Myoung;Kwon, Sun Hong;Jung, Dong Woo;Park, Jun Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.62-67
    • /
    • 2013
  • In this paper, the wave run.up on a vertical cylinder is presented. Various cross sections of a cylinder were simulated using the panel method for various wave periods. Two.dimensional model tests were performed in a wave flume. The simulation results are compared with the test results. The simulation is based on the linear diffraction theory.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.

A Study on Flow Structure of Breaking Wave through PIV Analysis (PIV기법을 활용한 쇄파의 유동구조 해석)

  • Jo, Hyo-Jae;Lee, Eon-Ju;Doh, Deog-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • This paper compares theoretical wave profile and particle kinematics with experimental results generated by a 2 D wave tank. Particle velocity fields of compound waves were acquired using a PIV technique. Synchronization was applied to acquire images of the wave fields, and the time gap between these images was controlled by the user. This technique was applied to investigate the wave breaking mechanism, and the wave profile and velocity distribution in a wave breaking field was obtained.

SPH simulation of solitary wave interaction with coastal structures

  • Cai, Guozhen;Luo, Min;Wei, Zhaoheng;Khayyer, Abbas
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.285-300
    • /
    • 2022
  • This paper adopts the Smoothed Particle Hydrodynamics (SPH) open-source code SPHinXsys to study the solitary wave interaction with coastal structures. The convergence properties of the model in terms of particle size and smoothing length are tested based on the example of solitary wave propagation in a flat-bottom wave flume. After that, the solitary wave interactions with a suspended submerged flat plate and deck with girders are studied. The wave profile and velocity field near the surface of the structures, as well as the wave forces exerted onto the structures are analyzed.