
1. Introduction

Metocean data are essential in the marine industry, such as in the 

transportation, installation, operation, and survival of offshore 

structures. They are also adopted to determine the departure time and 

route of merchant vessels, as well as new renewable energy 

development projects, and offshore constructions. Shipboard 

measurements began in 1854 for time-series observations of wind 

speed and wave height, while marine buoy was introduced in the 1970s 

for metocean observations. Owing to the emergence of marine 

observation satellites in the late 1970s, elucidating the phenomena of 

wind and waves became possible, and approximately 30 years of data 

covering the entire globe were collected with the steady development 

of technologies (Meucci et al., 2020). These accumulated measurement 

data have been harnessed to generate the re-analysis and hindcast data 

calculated via energy balance equations for wind and waves, including 

several ocean wave models and mathematical techniques (e.g., the 

differential equation of wave energy). Furthermore, owing to the 

consistent advancement of numerical models, predicting metocean 

conditions worldwide has become possible.

The European Centre for Medium-Range Weather Forecasts and the 

National Oceanic and Atmospheric Administration are well-known 

agencies that provide metocean predictions. In addition, the statistical 

analysis of metocean data enables the prediction of extreme values in 

extensive return periods (e.g., 10, 20, and 100 years) for the operation 

and survival of merchant vessels and offshore structures during their 

life cycle (Park et al., 2020). However, terrain and sea surface wind are 

required as input conditions when numerical wave models are used. 

Furthermore, temporal and spatial changes in waves are estimated 

according to the laws of physics; hence, they do not have a sufficient 

level of precision to replace the observed data. To address these issues, 

a study was conducted to estimate wave height through machine 

learning (ML; Kumar et al., 2018).

Conventionally, to enable computers solve a specific problem, 

humans digitize (e.g., define functions and assign boundary 

conditions) this problem using mathematical and statistical techniques. 

Conversely, using ML, humans provide the machine with information 

related to the problem they attempt to solve, and the machine learns 
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and decipher the rules for the solution to the problem. That is, ML is a 

data-driven modeling technology that enables machines to grasp the 

relationship between the input and output by learning by itself, without 

adopting any specific mathematical forms to solve the problem. From 

1940 to 1950, scientists from various fields began the discussion on 

the possibility of an artificial brain. However, it was not until 1956 that 

the term artificial intelligence (AI) was officially used. Afterward, this 

technology passed through a period of technological renaissance, 

followed by a period of stagnation. Currently, it is called machine 

learning, artificial neural network (ANN), or deep learning and is 

currently being incorporated into various academic and industrial 

fields. With the enhancements in big data technology and computer 

performance, ML is expected to continue expanding into other fields at 

an increasing rate (Haenlein and Kaplan, 2019). LeCun et al. (2015) 

introduced conventional ML models, such as feedforward neural 

network (FNN), convolutional neural network (CNN), recurrent neural 

network (RNN), and long-short term memory (LSTM). They also 

mentioned that these ML models can be applied in areas ranging from 

simple regression problems to image and voice recognition, language 

processing, and the medical industry. Moreover, studies have been 

conducted to detect oil spills using FNN (Kim and Kim, 2017) and to 

predict the path of a typhoon (Kim et al., 2019), as well as the volume 

of goods transported using LSTM (Kim and Lee, 2020). 

Jain and Deo (2006) presented previous studies that have utilized 

FNN in the field of ocean engineering. These studies include metocean 

(e.g., wave height, wave period, wind speed, and tidal level) 

predictions, as well as predictions of environmental forces acting on 

marine structures, damage to offshore structures, ship motions, and 

hull design. Among them, research that utilizes FNN to predict marine 

weather at a single location is being actively conducted. Moreover, a 

study was conducted on predicting wave variables (i.e., significant 

wave height and wave period) in the near future, using the past wave 

data measured using a buoy (Deo and Naidu, 1998; Makarynskyy, 

2004). A study was also performed on predicting wave variables using 

FNN (Mandal and Prabaharan, 2006). Furthermore, research was 

conducted to predict wave variables via FNN, using previously 

collected wind data (e.g., wind speed and wind direction) at a single 

location (Deo et al., 2001; Kim, 2020). Malekmohamadi et al. (2011) 

predicted significant wave heights using various soft computing 

methods (support vector machines (SVMs), Bayesian networks (BNs), 

and adaptive neuro-fuzzy inference system (ANFIS)), including FNN. 

In addition, they demonstrated that FNN produces better results than 

other models. To improve the accuracy of wave prediction, a 

hybrid-type model known as an empirical orthogonal function 

(EOF)-wavelet-neural network, which incorporated the ML model into 

the conventional statistical method, was proposed (Oh and Suh, 2018). 

Furthermore, a convolutional long short-term memory (ConvLSTM) 

model was developed by combining CNN and LSTM models, and the 

ConvLSTM model was proposed to solve the problem with the 

prediction of sea surface temperature (Jung et al., 2020). However, to 

perform ML for metocean predictions, it remains impossible for 

machines to handle the entire process unassisted. The input data for 

solving problems, selection of a suitable ML model, and tuning of 

hyperparameters are crucial in ML. However, human intervention is 

still required in this process, and it takes a significant amount of trial 

and error to create a ML model that can make excellent metocean 

predictions.

This paper proposes a ML model that predicts significant wave 

heights using the metocean data obtained from an oceanographic buoy 

at the Korea Strait, which was provided by the Korea Institute of 

Ocean Science and Technology (KIOST). The types and number of 

input data were classified into three cases by considering the Pearson 

correlation coefficient of the collected metocean data. The FNN and 

LSTM models that have incorporated the concept of window size were 

adopted as the ML model. The numbers of nodes and layers, including 

the activation functions for the hidden layer, were varied to derive the 

combination of hyperparameters that minimize the mean absolute error 

(MAE) between the predicted and measured values for the validation 

set. An ML model that predicts significant wave heights using the 

input variables, as well as the selected hyperparameters and their 

characteristics, were regarded as the outcome of this study.

2. Collection of Metocean Data and 

Statistical Analysis

The metocean data were collected from the Korea Strait 

oceanographic buoy provided by KIOST. The Korea Strait is one of 

the representative sea areas where sea trials are conducted on 

domestically built vessels before delivery. Fig. 1 illustrates the 

location of the Korea Strait oceanographic buoy. Its latitude and 

longitude are 34°55′0″ N and 129°07′16″ E, respectively. The 

Korea Strait oceanographic buoy commenced observations in 

September 2012 and has been in operation since then. The data 

adopted in this study span a total period of 9 years (from 2012 to 

2020). The collected data comprise 13 categories and is organized in 

intervals of 30 min. These categories include surface current speed, 

Fig. 1 Location of Korea Strait oceanographic buoy (Korea Institute 

of Ocean Science and Technology (KIOST), 2021)
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surface current direction, water temperature, salinity, significant wave 

height, significant wave period, maximum wave height, maximum 

wave period, wave direction, wind speed, wind direction, air 

temperature, and air pressure. For the raw data, approximately 17,500 

data sets are measured and stored each year on average, and the total 

number of data sets over the 9-year period is 157,825. There were 

outliers in the raw data because of the malfunction of the measuring 

equipment and facility repairs, owing to bad weather conditions. For 

time period that contain outliers (‘NaN’, ‘-’, ‘0’, ‘99.99’), all 

environment variables, including the time period, were discarded from 

the dataset. Fig. 2 and Table 1 present the number of data for each year 

for the raw and filtered data from where the outliers have been 

eliminated. The number of filtered data in 2012 and 2013 is 

significantly low because the buoy commenced its operation in 

September 2012, and significant wave height and current information 

were not stored in 2013 owing to an inherent problem with the 

measuring equipment. Excluding the data for 2012 and 2013, the 

amount of usable data is approximately 78% of the total data.

(a) Raw data (b) Filtered data

Fig. 2 Metocean data (2012~2020) of Korea Strait oceanographic buoy

Table 1 Data availability of metocean data of Korea Strait oceanographic buoy

Year No. of raw data
No. of outlier data

(‘NaN’, ‘-’, ‘0’, ‘99.99’)
No. of filtered data

Data availability
(%)

2012 17,568 15,413 2,155 12.3

2013 17,520 17,520 0 0.0

2014 17,520 1,842 15,678 89.5

2015 17,520 2,536 14,984 85.5

2016 17,568 7,718 9,850 56.1

2017 17,521 1,061 16,460 93.9

2018 17,520 1,572 15,948 91.0

2019 17,520 7,304 10,216 58.3

2020 17,568 3,982 13,586 77.3

Total 157,825 58,948 98,877 -

Fig. 3 Wave scatter diagram
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The statistical analysis was performed using approximately 98,000 

filtered data. Fig. 3 presents the wave scatter diagram(WSD) for the 

significant wave height and significant wave period, and Fig. 4(a) 

presents the wave rise with significant wave height and wave 

direction. In addition, Fig. 4(b) presents the wind rose with the wind 

speed and wind direction, while Fig. 4(c) illustrates the current rose 

diagram with the surface current speed and surface current direction. 

The WSD presents the frequency of the significant wave height at 

intervals of 1 m, as well as the frequency of the significant wave period 

at intervals of 1 s. The wave condition with the most frequency is 

between 0 m and 1 m for the significant wave height, and between 4 s 

and 5 s for the significant wave period. The direction the waves, winds, 

and currents move toward is depicted using a rose diagram and is 

divided into the east (90°), south (180°), and west (270°), in a 

clockwise direction from the true north (0°). According to the KIOST, 

the direction the waves and currents move toward and the direction the 

wind blows from are defined as the direction of each environmental 

variable. However, the definition of wind direction was altered to 

match the definition of wave and current direction and to adopt the 

direction as an input variable for the ML model. The most dominant 

directions of wave, wind, and currents in 16 azimuths are the northeast 

(NE), southwest (SW), and east-northeast (ENE) directions, 

respectively. For the wind direction, the frequency of the winds 

blowing toward the southeast (SE) direction is high as well, and it is 

presumed to be the effect of the northwest wind, which blows during 

the winter season in Korea.

In Fig. 5, the remaining categories, water temperature, salinity, air 

temperature, and air pressure are presented in histograms, which 

represent probabilities. The histogram for water temperature presents a 

uniform distribution, mostly between 10 ℃ and 30 ℃, and the salinity 

histogram exhibits a unimodal probability distribution at approximately 

5 psu. Similarly, the histograms for air temperature and air pressure 

exhibit unimodal probability distributions at approximately 20 ℃ and 

1010 hPa, respectively. In the air temperature case, an unrealistic 

temperature of approximately -60 ℃ was intermittently measured. 

Nevertheless, it is challenging to determine a reasonable threshold that 

can distinguish outliers in metocean data. However, an advantage of 

ML is that a small number of outliers do not have a significant effect on 

(a) Wave (b) Wind (c) Current 

Fig. 4 Rose diagram for wave, wind, and current

Fig. 5 Probability histogram for water temperature, salinity, air temperature, and air pressure
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the ML results (Jain and Deo, 2006). Therefore, the existing small 

number of outliers for air temperature (2% of the total data) was not 

discarded. Finally, the maximum wave height and maximum wave 

period were not adopted as input variables in this study; hence, they are 

not presented separately.

3. Machine Learning (ML) Methodology

The basic structure of an artificial neural network is created by 

imitating the human brain, which generates an output when a certain 

threshold is exceeded at a synapse junction between neurons. In this 

study, FNN and LSTM were adopted as the ML models. FNN is the 

simplest ML model that comprises input, hidden, and output layers, 

and LSTM exhibits an excellent performance in time-series learning. 

The first FNN layer is an input layer, and the number of nodes in the 

input layer is set to match the number of input variables. The final 

layer is the output layer, and it has the same number of nodes as the 

number of predictor variables. The layers between the input and output 

layers are called hidden layers, and the product of the input variables 

and weights are calculated using the arithmetic operation of the 

activation function. As the number of hidden layers increases, the 

neural network is called the multi-layer FNN or deep learning. 

Datasets are generally classified into a training and a test sets or 

training, validation, and test sets for machine learning. Recently, the 

rectified linear unit (ReLU), sigmoid, and hyperbolic tangent (Tanh) 

functions have been widely adopted as the activation function of 

hidden layers (LeCun et al., 2015). A linear function is used as the 

activation function for the output layer when there is no limit on the 

output value range. The result obtained from the arithmetic operations 

of the activation function in the output layer is the predicted value, and 

this value is compared with the measured value. The mean squared 

error (MSE) or the MAE is often adopted as the error function for this 

process. ML updates the weights and bias to minimize the error 

between the predicted and measured values. This process can be 

performed using an error backpropagation algorithm in a multi-layer 

neural network. The error backpropagation algorithm progresses from 

the output layer to the input layer, and it updates the weights and bias 

values of each layer of the neural network by using the partial 

derivatives of the error function. In addition, the error backpropagation 

algorithm can control the learning speed based on the learning rate. If 

the learning rate is quite high, the global minima cannot be attained. In 

contrast, the learning slows down if the learning rate is quite low, and 

the gradient descent falls into the local minima, which prevents it from 

reaching the global minima. An advanced gradient descent method 

known as the Adam optimizer is widely adopted in programming. A 

previous study adopted the concept of momentum to prevent the 

gradient descent from falling into the local minima, and this method 

can quickly and accurately determine the point where the differential 

gradient is the minimum (Cho, 2020).

LSTM is suitable for time-series data because it is configured with a 

feedback connection. It was devised to address the vanishing gradient 

or exploding gradient problem of RNN, which has a multi-layered 

structure. Hochreiter and Schmidhuber (1997) first developed LSTM 

by altering the internal nodes of the RNN with a complex structure 

Fig. 6 FNN and LSTM architecture with window size
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called a memory cell. It was improved by Gers et al. (1999), and the 

improved version is currently adopted as the ML model. LSTM is 

similar to FNN; however, the two models differ because three gates and 

the internal nodes share the same weight in LSTM. The three gates 

include the input, forget, and output gates, and they play the role of 

determining the extent to which the input information is memorized 

and are updated with new results based on this information (Ann, 2016; 

Jung et al., 2020). The LSTM structure comprises the input, hidden, 

and output layers. In addition, LSTM updates the weights and bias 

values using the error backpropagation algorithm to determine the 

predicted value with the minimum error, relative to the measured value. 

FNN and LSTM can both adopt sequence data as an input variable, 

and the number of sequence data is defined by the window size. Fig. 6 

illustrates the FNN and LSTM that have incorporated the concept of 

window size.

In this study, the ML development environment comprised Python 

3.7.10, TensorFlow 2.4.1, and Keras 2.4.0. Significant wave heights 

were predicted using the FNN that uses data from a single time point as 

an input, including the FNN and LSTM that have incorporated the 

concept of window size. The dataset was divided into training, 

validation, and test sets for the performance evaluation of ML models; 

in addition, the holdout validation was performed. The proportion of 

the training (2012–2018), validation (2019), and test (2020) sets is 

approximately 76:10:14. The sensitivity analysis was conducted based 

on the changes to the window size for the input data, the number of 

nodes and layers for the hidden layers, and the activation function 

(Eqs. (1)–(3)). In addition, the result with the smallest MAE (Eq. (4)) 

between the predicted and measured values in the validation set was 

selected as the optimal hyperparameter combination using the Adam 

optimizer. 

    max (1)

    


(2)

     
  

(3)

  


  



  (4)

In Eq. (4), ,  , and   represent the total number of data points in 

the dataset, predicted value, and measured value, respectively.

3.1 Input Layer Selection

The Pearson correlation coefficient (r) of Eq. (5) was derived for the 

collected metocean data to select the variables for the input layer of the 

ML model (Fig. 7).

 









 
 



 



 



  



 
 



 (5)

In Eq. (5),   and   represent individual values of the metocean data 

for calculating the correlation coefficient, while  and   are the 

average values of the selected metocean data. Here,  denotes the 

number of metocean data.

The significant wave height (), a predictor variable, was most 

correlated with the maximum wave height (), with a correlation 

coefficient of 0.97. The Hmax was followed by the significant wave 

period () and the maximum wave period () in the correlation 

coefficient order. However, the wave data with the same 

characteristics as the significant wave height were not used as the input 

data in this study. Instead, in addition to the wave data, the remaining 

environmental variables were adopted to devise an ML model for 

predicting the significant wave height. Excluding the wave data, the 

order of the absolute value of the correlation coefficient, from the 

highest to lowest, is wind speed, wind direction, current direction, and 

water temperature. Based on this result, the input variable conditions 

were divided into three categories in Table 2. In addition, to solve the 

discontinuity problem with the direction (0°–360°) for the current and 

wind directions, the method of expressing the direction was changed 

from the polar coordinate system to the Cartesian coordinate system 

(x, y), using Eq. (6). Afterward, the current and wind directions were 

adopted as the input variables (Table 2). The input variables were 

standardized using the feature scaling method (Eq. (7)). The gradient 

descent method was optimally applied by making the features of the 

distribution between the input variables the same.

Fig. 7 Pearson correlation coefficient for metocean data
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    cos   sin (6)

  


(7)

In Eq. (6),  denotes the angle, while  in Eq. (7) represents the 

input variable. In addition,  and  represent the mean and standard 

deviation, respectively. The input variables were categorized into 3, 5, 

and 10, and the category with three input variables comprised the wind 

speed and wind direction. This is because wind speed and wind 

direction are the most important factors for predicting waves in the 

FNN (Mohjoobi et al., 2008). Therefore, it is determined that 

estimating the wave height with only wind data is a substantially 

rational approach. The categories with 5 and 10 input variables were 

classified to identify the effect of the correlation coefficient between 

the output and input variables.

3.2 Hidden Layer Selection 

The number of nodes and layers in the hidden layers are 

hyperparameters related to the capacity of the model for the training 

set. If the capacity is low, underfitting occurs such that errors cannot 

be sufficiently reduced during the learning process. However, if the 

model’s capacity is quite high, overfitting may occur, where the model 

learns patterns that are unrelated to the prediction of the test set. There 

is no clear standard for determining the number of layers and nodes for 

the hidden layers corresponding to the input variables. Although 

several empirical formulas (Huang and Foo, 2002) exist, the optimal 

hyperparameters need to be determined via repeated experimentations, 

as well as through trial and error. Therefore, sensitivity analysis was 

performed on the number of layers and nodes in the hidden layers, and 

the test matrix is   presented in Table 3. The Adam optimizer and MAE 

were adopted as the optimizer and error function, respectively, while 

the number of batches and epochs were fixed at 256 and 200, 

respectively. To prevent overfitting, the early stopping technique was 

applied to stop the learning when the validation error reaches the 

minimum value in the iterative learning process. In addition, the 

learning rate was set to 0.001 (Kingma and Ba, 2014), and a linear 

function was used as the activation function for the output layer.

A total of 720 FNN and LSTM models were generated based on the 

changes to the hyperparameters, and training was performed on each 

model. The MAE between the predicted and measured values of the 

validation set was compared for each epoch, and the lowest result was 

No. of input data Input variables Note

3 Wind speed, wind direction (x,y) Wind data only

5
Wind speed, wind direction (x,y)

Current direction (x,y)
Data (  > 0.1)

10
Wind speed, wind direction (x,y)

Current speed, current direction (x,y)
Water temperature, salinity, Air temperature, air pressure

All data, excluding wave data

Table 2 Input variables for the input layer

ML model

Input layer Hidden layer

Activation function
No. of data (m)

Window size for 
sequence data (W)

No. of node No. of layer

FNN

3
5
10

   1 (30 min)
48 (1 day)

  720 (15 day)
1440 (30 day)

1
10
30
50
100

1
2
3
4

ReLU
Sigmoid

Tanh

LSTM

1
4
8
12
16

Table 4 Summary of ML models and hyperparameter

ML model

Input layer Hidden layer
Activation 
function

Cost 
function

Batch Epochs
No. of data (m)

Window size for 
sequence data (W)

No. of node No. of layer

FNN (W1) 3
5
10

1 (30 min)
30 3 ReLU

MAE 256 200FNN (W48) 48 (1 day)

LSTM (W48) 48 (1 day) 8 2 Tanh

Table 3 Test matrix for the sensitivity analysis
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selected as the representative value. Among the 720 calculated results, 

the combination with the smallest MAE was selected as the optimal 

hyperparameter.

The FNN (W1), which was trained with the training set comprising 

the input and predictor variables at a single time point, was selected as 

the baseline performance. From each ML model, the FNN (W48) and 

LSTM (W48), with a window size of 48 (1 day) each, had the lowest 

MAE for the corresponding hyperparameters (Table 4).

4. Results of Significant Wave Height Predictions 

Using the ML Model 

Significant wave heights were predicted using three types of ML 

models (i.e., FNN (W1), FNN (W48), LSTM (W48)), three cases of 

input variables (i.e., 3, 5, 10), and a combination of the optimal 

hyperparameters (Table 4). The ML models were evaluated using the 

test set. The predicted values calculated by inputting the input 

variables of the test set and the predictors in the test set were compared 

using a time-series graph and a histogram.

Fig. 8 presents time-series graphs for the three methods of the ML 

model and three conditions for input variables. In addition, the MAE 

between the predicted and measured values   is presented in the 

upper-right corner of each graph. In general, the calculated MAE of the 

model with only the wind variable (input variable 3) was the smallest. 

Furthermore, it can be observed that the FNN (W48) and LSTM (W48) 

with window sizes of 48 each generated better results than FNN (W1). 

Kim (2020) predicted the significant wave heights through FNN (W1) 

using the wind speed, wind direction, and wave direction data from the 

data collected by the Oeyeondo oceanographic buoy and obtained 

outstanding results with a MAE of 0.283 m. It is presumed that 

(a) FNN (W1)

(b) FNN (W48) 

(c) LSTM (W48)

Fig. 8 Comparison between the measured and predicted values in 

time series varied with input nodes and ML models

outstanding results could be obtained using only the FNN (W1) 

because the wind speed, which was adopted as the input variable, was 

highly correlated ( > 0.8) with the significant wave height. In the 

FNN (W48), the MAE tends to increase as the number of input 

variables gradually increases. However, the input variables (5 and 10) 

yield the same MAE in the case of the LSTM (W48). 

To check the frequency of the predicted values relative to the 

measured values for each wave height, the probability histogram of 
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two values for the significant wave height is presented in Fig. 9. The 

graphs on the left-hand side show the probability histogram for the 

entire data of each ML model. The graphs on the right-hand side 

present magnified histograms for the data with a significant wave 

height of 2 m or higher, which have low probability. In FNN (W1), the 

predicted values have a higher frequency than the measured values 

around the significant wave height of 0.6 m, where the frequency of 

the measured values is the highest. In contrast, the predicted values 

have a lower frequency than the measured values for a wave height of 

2 m or higher. For both the FNN (W48) and LSTM (W48) models, the 

(a) FNN (W1)

(b) FNN (W48)

(c) LSTM (W48)

Fig. 9 Comparison between the measured and predicted values varied 

with input nodes and ML models using the histogram

predicted values at approximately 0.6 m, where the frequency of the 

measured values is the highest, exhibit a frequency similar to the 

measured values. Although the probability of the occurrence of a high 

wave (with height of 5 m or higher) is low for the measured values, it 

was verified that a difference exists between the measured and 

predicted values in the area where the wave height is 5 m or higher for 

all three ML models.

Finally, the difference between the predicted and the measured 

values was analyzed by introducing the concept of the sea state (SS). 

The SS code, which the World Meteorological Organization (WMO) 

classified into grades 0–9, was adopted (Table 5). Significant wave 

heights of the measured values used as the test set are distributed 

between the SS2 grade and the SS7 grade, as provided by the WMO. 

Table 5 WMO sea state code (3700) (WMO, 2019)

Sea State
Wave height 

(m)
Median wave height 

(m)
Characteristics

0 0.00 - Calm (glassy)

1 0.00‒0.10 0.050 Calm (rippled)

2 0.10‒0.50 0.300 Smooth (wavelets)

3 0.50‒1.25 0.875 Slight

4 1.25‒2.50 1.875 Moderate

5 2.50‒4.00 3.250 Rough

6 4.00‒ 6.00 5.000 Very rough

7 6.00‒9.00 7.500 High

8 9.00‒14.00 11.500 Very high

9 Over 14.00 - Phenomenal
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The MAE between the predicted and the measured values in each SS 

range was nondimensionalized by the median of the corresponding SS, 

and its results are presented in Fig. 10.

In general, the result of input variable 3, which solely adopted wind 

as the input variable, exhibits a smaller MAE value   , compared to 

those of input variables 5 and 10. Using the variable with a correlation 

coefficient greater than 0.1 (input variable 5) yields the second-best 

result. Contrary to our expectations, a relatively large error was 

generated when the results were calculated by adding water 

temperature, salinity, air temperature, and air pressure, compared to 

using input variables 3 and 5. It is presumed that variables that have 

low correlation coefficients but with the significant wave height are 

recognized as noise during training, and they cause overfitting. In the 

FNN (W1), it can be verified that the difference between the predicted 

and measured values tend to increase steadily as the significant wave 

height of the measured value gradually increases according to the SS. 

The LSTM (W48) model exhibits better prediction performance than 

the other two models for the SS2 grade of low wave heights. However, 

excluding the results for the SS2 grade with relatively low absolute 

error, it is determined that the FNN (W48) with input variable 3 is the 

best prediction model. In addition, the FNN (W48) model exhibit a 

higher prediction accuracy than the LSTM (W48) model for the SS6 

and SS7 grades, and its computation speed is more than twice as fast. 

Therefore, considering the prediction accuracy and computation time, 

the FNN (W48) is proposed as a model for predicting significant wave 

heights in the Korea Strait.

5. Conclusion

In this paper, an ML model for predicting significant wave heights 

was proposed using the metocean data collected from the Korea Strait 

oceanographic buoy of KIOST. The ML model adopted FNN and 

LSTM network models. Based on the Pearson correlation analysis 

between the metocean data, three cases of input variables were 

selected. In addition, the hyperparameter combination with the 

minimum MAE was obtained via the sensitivity analysis of the 

window size, number of nodes in the hidden layers, number of layers, 

and activation function. The Adam optimizer was adopted as the 

optimizer in this process, and the number of batches and epochs were 

fixed at 256 and 200, respectively. Significant wave height prediction 

results of the FNN (W1) with a window size of 1 (30 min), the FNN 

(W48) with a window size of 48 (1 day), and the LSTM (W48) with a 

window size of 48 were compared with the measured values using 

time-series charts and histograms. In addition, the SS code was 

incorporated to compare the MAE nondimensionalized by the median 

of each SS for each model and input variable. The MAE of the 

prediction results was the smallest when the input variables solely 

comprised wind data. When environment variables that exhibit 

negligible correlation with the significant wave height (  < 0.1) were 

adopted, the MAE exhibited a tendency to increase. In the comparison 

of the FNN (W1) and the FNN (W48), which are the same FNN 

models, the FNN (W48) exhibited a smaller MAE for the test set. In 

the comparison between the FNN (W48) and LSTM (W48), using two 

models with the same window size, the LSTM (W48) exhibited a 

slightly smaller mean absolute error for the test set. However, when 

the MAE was compared based on the SS, the FNN (W48) with input 

variable 3 demonstrated better results between the SS3 and SS7 

grades, except for the SS2 grade. In addition, the FNN (W48) was 

twice as fast as the LSTM (W48) in terms of computation time. 

Therefore, by comprehensively considering factors such as the 

accuracy of significant wave height predictions and computation 

speed, the FNN (W48) was evaluated to be the suitable ML model for 

predicting significant wave heights in the Korea Strait. When 

predicting significant wave heights, selecting input variables using 

correlation coefficients can produce outstanding results in machine 

learning. In addition, it is determined that optimal prediction models 

can be created using only wind data (e.g., wind speed and wind 

direction). However, the prediction accuracy was slightly lower in 

high wave areas with a significant wave height of 4 m or higher. It is 

inferred that the high wave prediction exhibits lower performance 

because the amount of high-wave data owing to typhoons is 

insufficient. To address this problem, it is necessary to expand the 

high-wave data when typhoons occur or develop an ML model that 

efficiently utilizes limited high-wave data. Finally, The ML model that 

predicts significant wave heights using only wind data can be utilized 

at the practical work where is adjusting the engine’s power considering 

the added resistance of the ship, owing to the waves according to the 

SS, during sea trials. In the future, we plan to continue our research 

(a) FNN (W1) (b) FNN (W48) (c) LSTM (W48)

Fig. 10 Nondimensionalization of the MAE with sea state 
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and enhance the accuracy of the model for predicting significant wave 

heights in the Korea Strait by adopting the data obtained from other 

oceanographic buoys near the Korea Strait oceanographic buoy, or the 

hindcast data, as input variables.
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