• Title/Summary/Keyword: Ocean Storage

Search Result 323, Processing Time 0.033 seconds

Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater (알칼리성 폐기물과 해수를 이용한 이산화탄소 포집 및 해양저장)

  • Lee, Junghyun;Park, Misun;Joo, Jisun;Gil, Joon-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • We investigate the availability of $CO_2$ ocean storage by means of chemical conversion of $CO_2$ to the dissolved inorganic carbon (mainly the bicarbonate ion) in seawater. The accelerated weathering of limestone (AWL) technique, which is accelerating the natural $CO_2$ uptake process through the chemical conversion using limestone and seawater, was proposed as an alternative method for reducing energy-related $CO_2$ emission. The method presented in this paper is slightly different from the AWL method. It involves reacting $CO_2$ with seawater and quicklime obtained from alkaline wastes to produce the bicarbonate-rich solution over 100 times more than seawater, which could be released and diluted into the ocean. The released dense bicarbonate-enriched water mass could subside into the deeper layer because of the density flow, and could be sequestrated stably in the ocean.

Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment (극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석)

  • Son, Young-Moo;Kim, Jeong-Dae;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

A Study on Domestic Policy Framework for Application of Carbon Dioxide Capture and Storage(CCS) (이산화탄소 포집 및 저장 실용화를 위한 국내 정책 연구)

  • Chae, Sun-Young;Kwon, Suk-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.617-625
    • /
    • 2012
  • This study examines the current status and policy development of Carbon Dioxide Capture and Storage(CCS), which is a technology to mitigate climate change, in Korea and foreign countries. It also analyzes IEA CCS regulatory framework as a guideline and provides limitations and implications for marine geological storage in the Republic of Korea. Although CCS master plan is established at national level, related laws are not amended and detailed polices are not yet provided. Established 'Intergovernmental CCS committee' lacks its cooperative mechanism and flexibility. Only limited and segmented economic analyses are performed and funding for large scale of CCS project is not secured. In addition, information sharing is limited and public awareness activities are insufficient. Therefore, this paper provides some policy suggestions on establishing a legal framework based on the 'Marine Environmental Management Act', strengthening the role of intergovernmental CCS committee, conducting CCS economic analysis based on various scenarios, providing economic incentives and public participation strategies, and establishing a specialized agency for information sharing.

A Numerical Study on Hydrodynamic Force Affecting the Vertical Wall of a Portable Water Storage Tank (자유수면의 출렁임이 이동형 소방용수 저장탱크의 수직 벽면에 미치는 동수력에 대한 수치해석)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2017
  • In the present study, the hydrodynamic force acting on the vertical wall of a portable water storage tank is examined. A Dispersion Relation Preserving (DRP) method, proposed by Jang, is applied for simulating lapping waves and their impact on the wall. A meaningful investigation has been observed, which may be applied to the strength design for the portable water storage tank.

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

Study on the Prevention of Corrosion Damage for Underground Fuel Stroage Tank(1) (Corrosion Damage under the Sea Sand) (지하연료저장탱크의 부식손상 방지에 관한 연구(1) (바다모래에서 부식 손상))

  • 임우조;서동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • As consumption rate of energy increase rapidly, the facilities of fuel storage tank become large size. Almost all of the industry or public facilities storing fuel in underground fuel storage tank is manufactured by steel materials. Thus, this fuel storage tank made of steel materials is damaged by stray-current corrosion, it become destruction. If fuel storage tank is destructed, petroleum, oil and gas are leaked. So it bring about environmental pollution, energy loss, fire and explosion. Therefor, in this study, for study on the prevention of corrosion damage in underground fuel storage tank, it were investigated by corrosion and stray-current corrosion for SS 400 in dry sea sand and wet sea sand along to specific resistance. The main results obtained are as follows : As specific resistance decrease in wet sea sand, corrosion rate per year increase linearly, in case of back fill up wet sea sand in underground fuel storage tank, if the water is flow into dry sea sand, corrosion tendency of underground fuel storage tank is supposed sensitive.

  • PDF

Analysis of blue carbon storage research trends and consideration for definitions of blue carbon: A review (블루카본 저장 연구 동향 분석 및 블루카본의 정의에 대한 고찰: 리뷰)

  • Kyeong-deok Park;Dong-hwan Kang;Won Gi Jo;Jun-Ho Lee;Hoi Soo Jung;Man Deok Seo;Byung-Woo Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.82-91
    • /
    • 2024
  • In this study, research cases related to blue carbon storage were collected and analyzed, and various definitions of blue carbon were considered in terms of spatiotemporal scope and scientific aspect. 444 papers were selected as research cases related to blue carbon storage, and analysis of the number of papers published by year/country and keywords was performed. Publication of papers related to blue carbon storage has continued to increase since 2011, and more than 50 papers have been published annually since 2018. The most publications by country were in Australia with more than 100 papers, and the United States and China also published more than 60 papers. Key terms related to "natural environment" and "storage characteristics" were analyzed in the sentences defined in the 23 papers that presented the definition of blue carbon. The natural environments where blue carbon was stored were mostly mangroves, salt marshes, and seagrass beds, and blue carbon repository included sediments and even plants themselves. The existing definition of blue carbon focused on the vegetation environment as the storage environment for blue carbon. However, since blue carbon is stored in the sediments of coastal wetlands, it would be appropriate to define the coastal ecosystem, including non-vegetated mudflats, as the storage environment for blue carbon.

Reduction of Hydrodynamic Force Acting on the Vertical Wall of a Portable Water Storage Tank by Convex bottom Design (볼록한 바닥면 설계를 통한 소방용수 저장탱크의 수직 벽면에서의 동수력 저감 연구)

  • So, Soohyun;Park, Jinsoo;Sung, Hong Gun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.69-73
    • /
    • 2018
  • This study examined the reduction effect of a hydrodynamic force acting on the vertical wall of a portable water storage tank with a convex bottom floor. For the numerical simulation, the linearized Peregrine's equation was used to analyze the lapping waves in the tank caused by water falling from a supplying nozzle. The hydrodynamic force could be calculated by measuring the maximum run-up wave height at the vertical wall. The initial conditions of the numerical experiments were set up by controlling the positions and heights of the water supplying nozzle. Finally, the hydrodynamic force acting on the vertical wall can be reduced by the convex bottom design of the portable water storage tank so it can be applied to improve the structural stability.