• Title/Summary/Keyword: Ocean Power

Search Result 1,591, Processing Time 0.023 seconds

Estimation of Distributed and Joint-excited Input Power for Power Flow Analysis (파워흐름해석을 위한 분포가진 및 연결부 가진의 입력파워추정 연구)

  • Kim, Dong-Jin;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.597-603
    • /
    • 2006
  • The estimations of distributed and joint-excited input power for Power Flow Analysis are accomplished in this paper. Using Fourier transform, the displacements of infinite structures are derived, and the input power of distributed excitation can be estimated. The obtained results compare the real input power with the estimation of input power. When the exciting force acts on the joint of coupled structures, it is estimating the power that is transferred to each structure. Appling this input power, the results of energy density and intensity of Power Flow Analysis can be compared with the classical solutions.

A Study on the Concept and Attributes of Sea Power for Evaluation of Maritime Power (해양력 평가를 위한 해양력의 개념과 속성에 관한 연구)

  • Lim, B.T.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.295-304
    • /
    • 1997
  • For evaluation of maritime power, the attributes of sea power are identified in this paper by system analysis method. A many fundmental factors of sea power are selected by survey of the extensive and thorough literatures on maritime power. And the factors are classified into 11 standard attributes by cluster method. The 11 standard attributes are as follows: geographical condition, character of territory, character of the people, maritime will of the government, shipping power, navel power, shipbuilding power, fishing power, ocean research and development, dependence on seaborne trade, number of ocean population. As the sub-attributes of the standard attributes, 37 composite factors and some basic factors are defined through careful survey and discussion with some experts. As the result of this study, the maritime power is systematically identified as maritime power system. And it is realized that the evalution of maritime power system is the hybrid MADM problem with both quantitative and qualitative factors.

  • PDF

Study on Unmanned Hybrid Unmanned Surface Vehicle and Unmanned Underwater Vehicle System

  • Jin, Han-Sol;Cho, Hyunjoon;Lee, Ji-Hyeong;Jiafeng, Huang;Kim, Myung-Jun;Oh, Ji-Youn;Choi, Hyeung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • Underwater operating platforms face difficulties regarding power supply and communications. To overcome these difficulties, this study proposes a hybrid surface and underwater vehicle (HSUV) and presents the development of the platform, control algorithms, and results of field tests. The HSUV is capable of supplying reliable power to the unmanned underwater vehicle (UUV) and obtaining data in real time by using a tether cable between the UUV and the unmanned surface vehicle (USV). The HSUV uses global positioning system (GPS) and ultra-short base line sensors to determine the relative location of the UUV. Way point (WP) and dynamic positioning (DP) algorithms were developed to enable the HSUV to perform unmanned exploration. After reaching the target point using the WP algorithm, the DP algorithm enables USV to maintain position while withstanding environmental disturbances. To ensure the navigation performance at sea, performance tests of GPS, attitude/heading reference system, and side scan sonar were conducted. Based on these results, manual operation, WP, and DP tests were conducted at sea. WP and DP test results and side scan sonar images during the sea trials are presented.

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

Characteristic of holding power due to nature of seabed at anchor (묘박중 해저 저질에 따른 파주력 특성)

  • KIM, Byung-Yeob;KIM, Kwang-il;KIM, Min-son;NOBUO, Kimura;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.230-240
    • /
    • 2022
  • In general, a high tension on the anchor and chain is placed when a ship at anchor is subjected to heavy weather. Mariners have to pay attention to whether dragging anchor occurs to keep the safety of the ship at anchorage since it is difficult to maintain the stable motion of ship and it causes collisions with other ships nearby. In this paper, the ship motion against the external forces was shown to obtain the fundamental data about characteristic of holding power due to nature of seabed at anchor, so practical trials were carried out in rocky area and muddy area using a trial ship around coastal area of South Korea. In muddy seabed, holding power showed reasonable tension values depending on the distance from anchor position of continuing swing motions of a ship corresponding to wind force. Meanwhile in rocky seabed, tension values on the chain appeared very high occasionally regardless of the distance from the anchor position and seemed to exceed its holding power to be the breaking strain of the chain although weather was not in a severe condition. Therefore, some of the cables laid on the seabed were presumed to be caught in a crack on the rock. It is assumed that even a small amount of external force may cause the chain to break in a moment in rocky seabed. Additionally, wind and current forces had a somewhat contradictory effect on holding power of the ship between them.

Numerical Modeling on the Change in Discharge Performance of the Sluice for Tidal Power Plant According to the Apron Shape (물받이 형상에 따른 조력발전용 수문의 통수성능 변화 수치모델링)

  • Oh, Sang-Ho;Han, In-Suk;Kim, Gunwoo;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.94-102
    • /
    • 2013
  • In this study, numerical modeling was performed to investigate influence of the apron shape on the discharge performance of the sluice for tidal power plant. The numerical modeling was carried out for comparison of the difference in the discharge coefficient when the apron width, slope, and the length of the horizontal section were different, without considering change in the shape of the sluice caisson itself. The modeling result showed that significant discrepancy in terms of the overall discharge performance appeared according to the apron geometry. In order to achieve maximum discharge performance of the sluice caisson, it is desirable to make the design by putting a space equivalent to the width of the sluice caisson on its both sides, by making the apron slope be 1:5, and by keeping length of the horizontal section to be 50 m that is corresponding to the streamwise length of the sluice caisson.

Shore power to ships and offshore plants with flywheel energy storage system

  • Jeong, Hyun-Woo;Ha, Yun-Su;Kim, Yoon-Sik;Kim, Chul-Ho;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.771-777
    • /
    • 2013
  • This paper describes a study of major shipyard's electrical network and simulation of applying flywheel energy storage system on the electrical network at shipyard for shore-power to ships and offshore plants in order to save fuel consumption on engines, mitigate voltage sags, and prevent blackout due to pulsed load and fault, resulting in reduction of air emission into atmosphere. The proposed energy recycling method with FESS (Flywheel Energy Storage System) can be applied for electrical power system design of heavy cranes at shipyards.

Computation of Super High-Resolution Global Ocean Model using Earth Simulator

  • Kim, Dong-Hoon;Norikazu Nakashiki;Yoshikatsu Yoshida;Takaki Tsubono;Frank O. Bryan;Richard D.Smith;Mathew E. Maltrud;Matthew W. Hecht;Julie L. McClean
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.164-169
    • /
    • 2003
  • The need fur higher grid resolution in climate models is often discussed (e.g. McAvaney et al.,2001) because a number of important oceanic processes are not resolved by the current generation of coupled models, e.g., boundary currents, mesoscale eddy fluxes, sill through flows. McClean et al., (1997) and Bryan and Smith (1998) have compared simulated mesoscale variability in simulations at several eddy-resolving resolutions to TOPEX/Poseidon and similar data. (omitted)

  • PDF

Exploration of power take off in wave energy converters with two-body interaction

  • Wang, Hao;Sitanggang, Khairil;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-106
    • /
    • 2017
  • The study explores a novel design of wave energy converter (WEC) that utilizes the interaction between an inside heaving vertical cylinder with an outside fixed hollow cylinder. This design originates from the oscillating water column (OWC) type WEC but replaces the pneumatic power take off (PTO) through the Wells turbine with the hydrodynamic PTO through the inside heaving cylinder. To effectively evaluate the maximum power output, the system has been modeled in the hydrodynamic software AQWA (developed by ANSYS Inc) that has accumulated extensive offshore industry users. Ranges of the PTO parameters have been examined to make sure that proper linear damping can be implemented to simulate the PTO force. Comparing the efficiency of the pneumatic PTO with the hydrodynamic PTO, it appears that the hydrodynamic PTO is more promising than the traditional Wells turbine for an OWC system.