• 제목/요약/키워드: Ocean Power

검색결과 1,591건 처리시간 0.021초

Study on a Fully Electrified Car Ferry Design Powered by Removable Battery Systems Considering Domestic Coastal Environment

  • Hong, Jang Pyo;Kim, Young-Shik;Shim, Hyung-Won;Kang, Hee-Jin;Kim, YunHo;Kim, Gyu Bum;Cho, Seongpil
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.1-12
    • /
    • 2021
  • As increasing the international community's awareness of greenhouse gas reduction, the demand for eco-friendly ship fuel has accelerated recently. The fundamental aim of this study is to develop a new type of fully electrified ferry for passengers and cars considering Korean domestic coastal environmental conditions. Several technical difficulties are encountered in applying a fully electric propulsion system based on removable battery systems into a ship due to limitations imposed by the batteries' size and capacity. This paper reviews and analyzes marine environment regulations strengthened recently, technology trends related to fully electric propulsion vessels in each country, and Korean domestic coastal environments. We propose a new fully electrified car ferry design with a displacement of 400 t applied in Korea. It is powered by removable battery systems pre-charged in a safe inland charging station. The mobile battery system is developed to enable roll-on and roll-off using wheels. The characteristics of the ship motion are analyzed based on the weight and location of the battery systems. We expect our battery systems to be applicable to larger ships in the future.

파도를 이용한 2자유도 파력진동발전시스템에 대한 연구 (The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave)

  • 한기봉;이형우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1028-1034
    • /
    • 2011
  • 본 논문에서는 파도의 상하운동에너지의 이용효율을 높이기 위해서 부양체와 2 D.O.F.(자유도) 진동발전시스템을 일체로 구성한 파력진동발전시스템을 제안한다. 파도가 갖는 상하운동 주파수 중 속도 에너지가 큰 주요 주파수 ${\omega}_1$, ${\omega}_2$을 선정하고, 2 D.O.F. 파력진동발전시스템의 고유진동수와 선정된 주파수들을 일치시킨다. 그러면 공진효과에 의해 각각의 질량과 권선사이의 상대속도가 파도의 상하운동속도보다 커진다. 또한 2 D.O.F. 진동시스템의 연성효과로 인한 1 D.O.F. 파력진동발전시스템보다 더 많은 전기에너지를 얻을 수 있다. 따라서 본 논문에서 제안한 2 D.O.F. 파력 발전시스템은 파도가 갖는 에너지를 더 많이 이용할 뿐만 아니라 더 많은 전기에너지를 얻을 수 있는 장점을 가짐을 알 수 있었다.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Preliminary Design and Performance Analysis of Ducted Tidal Turbine

  • Jo, Chul-Hee;Lee, Kang-Hee;Kim, Do-Youb;Goo, Chan-Hoe
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.176-185
    • /
    • 2015
  • Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Tidal current power, one of the ocean energy resources, has great potential worldwide due to its high energy density. The flow velocity is the most crucial factor for the power estimation of TCP(Tidal Current Power) system since the kinetic energy of the flow is proportional to the cube of the flow speed. So sufficient inflow speed to generate electricity from the tidal current power is necessary. A duct system can accelerate the flow velocity, which could expand the applicable area of TCP systems to relatively lower velocity sites. The shapes of the inlet and outlet could affect the flow rate inside the duct. To investigate the performance of the duct, various ducts were preliminary designed considering the entire system that is single-point moored TCP system and a series of simulations were carried out using ANSYS-CFX v13.0 CFD software. This study introduces a ducted turbine system that can be moored to a seabed. A performance estimation and comparison of results with conventional tidal converters were summarized in this paper.

신형식 해상풍력 구조체 최적 설계 (Optimum Design of New Type Offshore Wind Power Tower Structure)

  • 한택희;윤길림;원덕희;오영민
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2012년도 춘계학술대회
    • /
    • pp.388-389
    • /
    • 2012
  • 현재 해상풍력 발전 타워는 강구조로 제작되고 있으며, 발전용량의 증가에 따라 타워 구조체 또한 장대화 되는 추세이다. 강조조물의 특성상 좌굴에 취약하며, 장대화 됨에 따라 세장비가 증가하여, 좌굴 및 진동에 취약한 특성을 보이게 된다. 본 연구에서는 신형식 구조체인 이중관-콘크리트 합성 구조(DSCT; Double Skinned Composite Tubular)를 적용한 해상풍력 타워를 제시하고 요구 성능을 만족하는 최적 단면 설계를 제시하였다. 관은 섬유보강 합성수지 (FRP; Fiber Reinforce Polymer)와 강재를 적용한 경우를 고려하였으며, 모두 요구 성능을 만족하였다.

  • PDF

국제사회 힘의 변화와 해양레짐 출현에 관한 소고 -유엔 해양법협약을 중심으로- (The Emergence of International Ocean Regime and the Change of Power Concept in International Society -The Case of United Nations Convention on the Law of the Sea-)

  • 강량;박성욱;양희철
    • Ocean and Polar Research
    • /
    • 제28권3호
    • /
    • pp.273-285
    • /
    • 2006
  • As the political arguments on international power concept has gradually been deepened, the role of international regimes, defined as principles, norms, rules, and decision-making procedures around which nation-actors' expectations converge in a given issue-area, has also been reinforced. There are many ways of understanding about international regimes. In terms of realistic theories, international regimes are one of methods of maintaining hegemonic power order of hegemonic nation and in terms of liberalistic theories, international regimes are understood as the products of mutual inter-dependence of nations in changing international society. As a matter of fact, if we take structural causes and regime consequences into severe consideration, we can find not a few characteristics of international regimes, such as security regime, world trade and fiance regime, ocean regime, environmental regime, human right regime, etc. This paper will examine the changing concept of power after World War II in three categories of hard power (military power), meta power (regime creating power), and soft power (advanced in cultural, diplomatical, and technological power). This paper will provide the evidence of why the changing power concepts will be strongly related with the emergence of international regimes. The UN convention on the law of the sea will chosen as a standard case of the ocean regime and it's regime structure and role will also be analysed in both realistic :md liberalistic theories. Futhermore, the nations' interests involved in the UN convention on the law of the sea will be analytically classified and finally a future prospectus of the UN convention on the law of the sea as an ocean regime will be tested.

Experimental Study on Performance of Wave Energy Converter System with Counterweight

  • Han, Sung-Hoon;Jo, Hyo-Jae;Lee, Seung-Jae;Hwang, Jae-Hyuck;Park, Ji-Won
    • 한국해양공학회지
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2016
  • In order to convert wave energy into large quantities of high-efficiency power, it is necessary to study the optimal converter system appropriate for the environment of a specific open ocean area. A wave energy converter system with a counterweight converts the translation energy induced from the heave motion of a buoy into rotary energy. This experimental study evaluated the primary energy conversion efficiency of the system, which was installed on an ocean generating basin with a power take-off system. Moreover, this study analyzed the energy conversion performance according to the weight condition of the buoy, counter-weight, and flywheel by changing the load torque and wave period. Therefore, these results could be useful as basic data such as for the optimal design of a wave energy converter with a counterweight and improved energy conversion efficiency.

Discussions on Availability of Weather Information Data and Painting Effect of Existing 8,600 TEU Container Ship Using Ship Performance Analysis Program

  • Shin, Myung-Soo;Ki, Min Suk;Lee, Gyeong Joong;Park, Beom Jin;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.377-386
    • /
    • 2020
  • This paper discusses the effectiveness of onboard measurements and data extracted from weather information for speed-power analysis. Furthermore, validation results of hull and propeller cleaning and painting during dry-docking are discussed. Wind and wave information can be obtained from onboard measurements or weather information from the National Oceanic and Atmospheric Administration (NOAA). The weather information of a specified position and time is extracted from NOAA weather data and compared with onboard measurements. In addition, to validate the effects of hull cleaning and painting during dry-docking, speed-power analysis results of before and after dry-docking are compared. The results show that both onboard measurements and weather information show acceptable reliability when added resistance and speed-power analysis results are compared with each other. Moreover, the ship performance analysis (SPA) software clearly shows the effects of hull cleaning and painting, and it can provide reliable analysis results with either onboard measurements or weather information. In conclusion, it is confirmed that the analysis method and SPA software used in this study are effective in analyzing the ship's speed-power performance.

터빈 특성을 고려한 부유식 조류발전장치의 운동성능 고찰 (Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications)

  • 조철희;황수진;박홍재;김명주
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.427-432
    • /
    • 2018
  • Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device. In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater.

파력을 이용한 하이브리드 발전에 대한 연구 (The Research of the Hybrid Power Generation using Ocean Wave)

  • 한기봉;이형우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.861-866
    • /
    • 2011
  • 본 논문에서는 파도의 상하운동에 의해 발전되는 형발전시스템과 진동발전시스템이 결합된 하이브리드 발전방법을 제안한다. 선형발전시스템은 권선과 영구자석으로 구성되어있고, 파도의 상하운동속도를 직접적으로 사용하므로 파도의 주파수에 관계없이 안정적인 발전을 한다. 그리고 진동발전시스템은 진동시스템인 영구자석, 스프링과 발전시스템인 영구자석, 권선으로 구성되어 있다. 진동발전시스템은 파도의 주파수와 진동시스템의 고유진동수를 일치시킨 공진대역에서 구동함으로써 파도의 상하운동 속도보다 더 큰 속도를 이용하여 더 많은 전기에너지를 얻을 수 있다. 따라서 본 연구에서 제안한 하이브리드 파력발전방법은 공진영역에서 더 많은 전기에너지를 얻을 수 있을 뿐만 아니라 공진영역을 벗어난 대역에서도 안정적으로 발전할 수 있는 장점을 가짐을 알 수 있다.