• Title/Summary/Keyword: Occupied Bandwidth

Search Result 45, Processing Time 0.025 seconds

Maximizing Network Utilization in IEEE 802.21 Assisted Vertical Handover over Wireless Heterogeneous Networks

  • Pandey, Dinesh;Kim, Beom Hun;Gang, Hui-Seon;Kwon, Goo-Rak;Pyun, Jae-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.771-789
    • /
    • 2018
  • In heterogeneous wireless networks supporting multi-access services, selecting the best network from among the possible heterogeneous connections and providing seamless service during handover for a higher Quality of Services (QoSs) is a big challenge. Thus, we need an intelligent vertical handover (VHO) decision using suitable network parameters. In the conventional VHOs, various network parameters (i.e., signal strength, bandwidth, dropping probability, monetary cost of service, and power consumption) have been used to measure network status and select the preferred network. Because of various parameter features defined in each wireless/mobile network, the parameter conversion between different networks is required for a handover decision. Therefore, the handover process is highly complex and the selection of parameters is always an issue. In this paper, we present how to maximize network utilization as more than one target network exists during VHO. Also, we show how network parameters can be imbedded into IEEE 802.21-based signaling procedures to provide seamless connectivity during a handover. The network simulation showed that QoS-effective target network selection could be achieved by choosing the suitable parameters from Layers 1 and 2 in each candidate network.

A Study of a Hierarchical Grade-based Contents Forwarding Scheme for CCN Real-time Streaming Service (CCN 실시간 스트리밍 서비스를 위한 계층별 차등기반의 데이터 전송 기법 연구)

  • Kim, Taehwan;Kwon, Taewook
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1219-1230
    • /
    • 2017
  • Real-time streaming services over the Internet have increased with the explosive growth of the various mobile platforms, with a focus on smart phones, and the demand for them is growing. In addition, the bandwidth occupied by the streaming services over the Internet had already surpassed 50% in 2010. Because of the shortage of network bandwidth for multimedia services traffic, restrictions on quality and capacity will become more and more serious. CCN is a future Internet architecture that improves how existing host-based Internet architecture handles content-oriented structure, but it is designed for the transmission of general contents and is not suitable for transmitting real-time streaming contents. In this paper, we focus on the inefficient aspects of CCN and propose a hierarchical grade-based scheme for real-time service for a more efficient environment in real-time streaming services. Experiments have shown better performance in terms of bandwidth, network load, and reliability.

State-Dependent Call Admission Control in Hierarchical Wireless Multiservice Networks

  • Chung Shun-Ping;Lee Jin-Chang
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • State-dependent call admission control (SDCAC) is proposed to make efficient use of scarce wireless resource in a hierarchical wireless network with heterogeneous traffic. With SDCAC, new calls are accepted according to an acceptance probability taking account of not only cell dwell time but also call holding time and system state (i.e., occupied bandwidth). An analytical method is developed to calculate performance measures of interest, e.g., new call blocking probability, forced termination probability, over. all weighted blocking probability. Numerical results with not only stationary but nonstationary traffic loads are presented to show the robustness of SDCAC. It is shown that SDCAC performs much better than the other considered schemes under nonstationary traffic load.

Design and fabrication of IEEE-802.15.4 protocol based universal sensor node platform with good extensity (확장성이 고려된 IEEE-802.15.4 기반의 저전력 범용 센서노드 설계 및 제작)

  • Chung, Wan-Young;Shin, Kwang-Sig;Jang, Sung-Gyun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • Low power consumption sensor network platform (sensor node) for sensor networking with IEEE 802.15.4 protocol was fabricated. The sensor node used ceramic bar type antenna for increasing RF signal performance and decreasing PCB size occupied by antenna. The communication range of the fabricated sensor node was about $20{\sim}30$ m in open environment with 915 MHz frequency bandwidth and well supported by Tiny OS. The sensor node have good connectivity with various external devices by RS-232, I2C, analogue and digital expansion board, hence, this sensor node can be applied to various applications in wireless sensor network and ubiquitous sensor network.

Patent Trends on Reconfigurable Intelligent Surface (지능형 재구성 안테나 특허 동향)

  • Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • To accommodate various mobile communication frequency bands, the study of metamaterial antennas have begun since the mid-2000s to solve the Trilemma problem between antenna gain-occupied bandwidth-size. As an adaptive reconfiguration function is required in a multi-array antenna system since 4G, the metamaterial array antenna using low-power variable elements has been used to change the basic structure of the antenna. Recently, reconfigurable intelligent surface (RIS), which is made of metasurface with reconfigurability, has been studied to effectively cope with the randomly varying radio channels and be used for various purposes such as reflection/transmission/modulation. As a result of RIS-related patent information analysis in this study, it was confirmed that most of the patents are metamaterial antennas and metamaterial array antennas, but the metasurface antenna technology was in the early stages. Particularly, as the intelligent metasurface antenna is in a more initial stage, the investment to R&D of RIS is urgent to secure patent competitiveness in B5G and 6G.

Performance Analysis of IBAC DAB System for Bandwidth in Korea FM Interference Environmentlevance Feedback (국내 FM 간섭환경에서 대역폭에 따른 IBAC DAB 시스템의 성능분석)

  • 조병록;김태훈;오길남
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • The IBAC DAB system was interfered by existing FM broadcasting signal as was used guardband within existing FM broadcasting. The FM interference signals are very important parameter in performance evaluation of IBAC DAB system. We got the characteristic of FM PSD in according to instantaneous change and average characteristic of FM broadcasting signal in according to characteristic of FM channel. In this paper, based on proposed IBAC DAB system, we analyze effects of FM interference for occupied bandwidth and performance of IBAC DAB modeling various FM interference signals with sum of sinusoid function using C language, suggest FM interference ratio that can maintain performance. We was know that IBAC DAB system have a great performance variation in according to average characteristic of FM PSD by simulation results, also, FM interference ration that can maintain performance of system is 10dB.

  • PDF

A Router Buffer-based Congestion Control Scheme for Improving QoS of UHD Streaming Services (초고화질 스트리밍 서비스의 QoS를 향상시키기 위한 라우터 버퍼 기반의 혼잡 제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.974-981
    • /
    • 2014
  • These days, use of multimedia streaming service and demand of QoS (Quality of Service) improvement have been increased because of development of network. QoS of streaming service is influenced by a jitter, delay, throughput, and loss rate. For guaranteeing these factors which are influencing QoS, the role of transport layer is very important. But existing TCP which is a typical transport layer protocol increases the size of congestion window slowly and decreases the size of a congestion window drastically. These TCP characteristic have a problem which cannot guarantee the QoS of UHD multimedia streaming service. In this paper, we propose a router buffer based congestion control method for improving the QoS of UHD streaming services. Our proposed scheme applies congestion window growth rate differentially according to a degree of congestion for preventing an excess of available bandwidth and maintaining a high bandwidth occupied. Also, our proposed scheme can control the size of congestion window according to a change of delay. After comparing with other congestion control protocols in the jitter, throughput, and loss rate, we found that our proposed scheme can offer a service which is suitable for the UDH streaming service.

A Design of Pipeline Chain Algorithm Based on Circuit Switching for MPI Broadcast Communication System (MPI 브로드캐스트 통신을 위한 서킷 스위칭 기반의 파이프라인 체인 알고리즘 설계)

  • Yun, Heejun;Chung, Wonyoung;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.795-805
    • /
    • 2012
  • This paper proposes an algorithm and a hardware architecture for a broadcast communication which has the worst bottleneck among multiprocessor using distributed memory architectures. In conventional system, The pipelined broadcast algorithm is an algorithm which takes advantage of maximum bandwidth of communication bus. But unnecessary synchronization process are repeated, because the pipelined broadcast sends the data divided into many parts. In this paper, the MPI unit for pipeline chain algorithm based on circuit switching removing the redundancy of synchronization process was designed, the proposed architecture was evaluated by modeling it with systemC. Consequently, the performance of the proposed architecture was highly improved for broadcast communication up to 3.3 times that of systems using conventional pipelined broadcast algorithm, it can almost take advantage of the maximum bandwidth of transmission bus. Then, it was implemented with VerilogHDL, synthesized with TSMC 0.18um library and implemented into a chip. The area of synthesis results occupied 4,700 gates(2 input NAND gate) and utilization of total area is 2.4%. The proposed architecture achieves improvement in total performance of MPSoC occupying relatively small area.

Next-Generation Intelligent Radio Monitoring System (차세대 지능형 전파감시 시스템)

  • Yim, Hyun-Seok;Moon, Jin-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.846-851
    • /
    • 2008
  • With rapid development of communication industry, the kinds of communication service vary. According to the increasing use of radio waves, the intelligent and effective radio monitoring system needs to be developed, which is replaced for previous radio monitoring system. Next-generation intelligent radio monitoring system based on ITU-R, Rule of wireless facilities, and Radio Waves Act is used, and which can accurately and effectively function as effective radio monitoring system through spectrum analysis of channel power, frequency deviation, offset, and an occupied frequency bandwidth(99% or x-dB), about the analog and digital signal in On-Air of V/UHF bandwidth. Main function of the system has an radio quality measurement, unwanted electromagnetic signals (spurious, harmonic) measurement, high-speed spectrum measurement, frequency usage efficiency investigation, illegal radio exploration, working monitoring, In this paper, we proposes radio quality measurement, high-speed spectrum measurement of next-generation intelligent radio monitoring system.

Performance Evaluation of Interconnection Network in Microservers (마이크로서버의 내부 연결망 성능평가)

  • Oh, Myeong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.91-97
    • /
    • 2021
  • A microserver is a type of a computing server, in which two or more CPU nodes are implemented on a separate computing board, and a plurality of computing boards are integrated on a main board. In building a cluster system, the microserver has advantages in several points such as energy efficiency, area occupied, and ease of management compared to the existing method of mounting legacy servers in multiple racks. In addition, since the microserver uses a fast interconnection network between CPU nodes, performance improvement for data transfers is expected. The proposed microserver can mount a total of 16 computing boards with 4 CPU nodes on the main board, and uses Serial-RapidIO (SRIO) as an interconnection network. In order to analyze the performance of the proposed microserver in terms of the interconnection network which is a core performance issue of the microserver, we compare and quantify the performance of commercial microservers. As a result of the test, it showed up to about 7 times higher bandwidth improvement when transmitting data using the interconnection network. In addition, with CloudSuite benchmark programs used in actual cloud computing, maximum 60% reduction in execution time was obtained compared to commercial microservers with similar CPU performance specification.