• Title/Summary/Keyword: Occupants

Search Result 506, Processing Time 0.028 seconds

Influence of Authenticity on Electrical Energy Saving Behavioral Intention (진정성이 전기에너지 절약 행동의도에 미치는 영향)

  • Kim, Young-Doo
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.11
    • /
    • pp.67-76
    • /
    • 2018
  • Purpose - Electrical energy saving is one of the practical virtues relating to sustainable living. Therefore, policy-makers has tried to find a way to change the behaviors of individuals to encourage them to actively practice electrical energy saving, even if they have never had this concern or have only passively practiced electrical energy saving to this point. Prior research related to electrical energy saving can be categorized into several types. The first is focused on consumer characteristics linked to electrical energy saving. These studies are based on individual or household socio-demographic variables (e.g., age, gender, household income, education level, occupants, marital status, number of households), and psycho-graphics (e.g., environmental consciousness, value, attitude, motivation, lifestyle). The second is focused on policies (e.g., monetary incentives, information sharing, social comparison, feedback), and technologies (e.g., energy-efficiency home appliances, energy-reduced products, renewable resources). People generally have a favorable attitude towards electrical energy saving, while electrical energy saving practices tend to be less favorable. Therefore, it is necessary for policy-makers to seek out gaps between attitudes and behaviors and find alternatives to reduce these gaps. This study investigates the influence of authenticity on the behavioral intention of electrical energy saving. It is supposed that electrical energy saving practices are likely to be stronger as authenticity of individual or household becomes stronger. This study reviews prior literature and examines various studies to provide an understanding of the relationships between authenticity and electrical energy saving behavioral intention. Research design, data, and methodology - Hypothesis was drawn from analysis based on previous research. The items related to authenticity and electrical energy saving were selected from items found in previous research. To verify this hypothesis, data were collected via experimental survey method and the resulting data were analyzed using reliability analysis, correlation analysis, and hierarchical regression analysis. Results - This study found that authenticity had a positive impact on the behavioral intention of electrical energy saving. The higher the perceived degree of authenticity, the higher the behavioral intention of electrical energy saving. Conclusions - This study assesses the impact of authenticity on the behavioral intention of electrical energy saving. In order to enhance the practice of electrical energy saving, it is efficient strategy for policy-maker to improve the perceived authenticity of individuals.

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Development of a Movable Drawer Type Light-Shelf with Adjustable Depth of the Reflector (반사판의 폭 조절이 가능한 서랍형 타입의 가동형 광선반 개발 연구)

  • Kim, Dasom;Lee, Haengwoo;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.343-349
    • /
    • 2016
  • Due to the recent increase in lighting energy consumption in buildings, there are a growing number of studies seeking solutions this problem. The effectiveness of light-shelves as natural lighting systems to solve this problem has been recognized, and various studies regarding such systems are being carried out currently. However, the lighting efficiency of light-shelves decreases if illumination intensity is low-such as at night time, and it also obstructs the views of building occupants. Therefore, the purpose of this study is to examine a movable drawer type light-shelf which allows for the width of the reflector to be adjusted and verify its performance through a simulated test-bed. The following conclusions were reached. 1) The purpose of this study is to solve the problem previously associated with the light-shelf system- of obstructed views-by responding to external environments and minimizing the width of the light-shelf at night time when the efficiency of the light-shelf declines. 2) The proper variables of the movable drawer type light-shelf which enables the width adjustment of the reflector were ascertained in this study according to four solar terms : a width of 0.6 m at an angle of $20^{\circ}$, a width of 0.4m with an angle of $20^{\circ}$, and a width of 0.1 m with an angle of $20^{\circ}$ were determined for the summer solstice, fall/spring equinoxes, and winter solstice respectively; revealing that width adjustment of the light-shelf is a significant factor. 3) The movable drawer type light-shelf which enables${\backslash}$width adjustment of the reflector suggested in this study can reduce the lighting energy consumption by 18.7% and 14.3% in comparison to previous light-shelves with a fixed width of 0.3 m and 0.6m, indicating that it is effective for saving energy.

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

A Study on Escape Safety Assessment of High-Rise Office Buildings for Security Plans (경호경비계획을 위한 사무용 고층건축물의 피난안전성평가에 관한 연구)

  • Park, Nam-Kwun;Lee, Young-Ju;Yoon, Myong-O
    • Korean Security Journal
    • /
    • no.28
    • /
    • pp.57-77
    • /
    • 2011
  • Recently, property and life loss is increasing internally and externally, due to fire spread in high-rise buildings which results from a variety of disasters like fire and terror. In this study, therefore, an evacuation simulation was performed to predict escape behaviors of occupants and assess escape safety in high-rise office buildings after setting up each scenario, as part of safety measures for high-rise buildings. Based on the results and data obtained, escape safety was assessed, finally. The results and suggestions of this study are as follows. Firstly, most of the present researches on high-rise building and multiple-use facilities are weighted towards qualitative perspectives. It is, therefore, considered that we have to establish concrete, practical, systematical and rational safety measures to minimize damages in dangerous situations, by analyzing security plans for high-rise buildings in depth and preparing for those situations from various angles. Secondly, setting up evacuation sections in security plans for high-rise buildings is an important factor which influences refuge. Thirdly, in relation to security plans for high-rise buildings, it is possible to reduce the entire time for escape, by setting up escape exits of each floor in consideration of a simultaneous evacuation situation.

  • PDF

The Performance of the Combined Operation of Sprinkler and Smoke Curtain for Smoke Control in the Sloped Stairway Corridor (경사통로로 전파되는 연기에 대한 스프링클러와 제연커텐의 통합제연성능)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, CFD computer simulations by FDS are carried out in order to confirm the performance of the combined operation of both sprinkler system and smoke curtain of 0.54 m depth installed for cooling and blocking the smoke which propagates beneath the sloped ceiling of a stairway corridor of which dimensions are 17.92 m long, 4.00 m wide, and 6.12 m high. It is shown that the response time of sprinklers decreases with fire size and it increases more about 1.1 second in case without smoke curtain than in case with smoke curtain, that the time of smoke transport from the fire source to the stairway outlet decreases considerably with fire size, and that the delay effect of smoke transport is not related to the sprinkler system, whether it is operated or not. This study shows that the combined operation of both sprinkler system and smoke curtain is very effective in smoke cooling, but it is a little for effect on smoke blockage. Although the hazard of skin burn due to radiative heat flux from hot smoke layer is decreased by spray cooling effect, the hazard of smoke suffocation and the weakening of visibility is increased by smoke downdrag and the turbulence of smoke-air mixing due to water spray. These conditions may result in preventing occupants from going out of the stairway during evacuation.

A Study on the Evacuation Risk of Simultaneous Fires from Exterior (외장재에 의한 동시다발적인 화재의 피난위험성에 관한 연구)

  • Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.48-54
    • /
    • 2012
  • In order to study on the evacuation risk when connate fires caused by vertical fire spread of the exterior occurs, the egress simulations based on the relevant scenarios has carried out. As a result of it, ASET (permitted evacuation time) was reached in between 550 to 650 seconds in entire floors after vertical smoke spread from fire of combustible exteriors. In particular, ASET was 358 seconds in the first floor, 490 seconds in the six floor and 473 seconds in the tenth floor. In addition, five floors of all levels, the 1st floor, the 6th floor and the 28th floor ~30th floor, show RSET (minimum evacuation time) which is bigger than ASET as evacuation risk. This result presents occupants in high rise buildings with more than 15 floors might not be able to egress of them using staircases due to huge population attempting to evacuate simultaneously. Particularly, 699 people in the upper levels by smoke from the first floor are having difficulty escaping this building since ASET on the first floor adjacent to the ignition point was 358 seconds which is relatively reached fast. Considering a prevention method of the fire and smoke spread, architects have to use non-combustible exterior in the building's facade to be required as an active fire protection system.

Study in Occupational Exposure to Radiations and Radioactive Isotopes (방사선 및 방사성동위원소 근로자 피폭실태 연구)

  • Lee, Du-Yong;Kim, Kwang-Jin;Park, Hee-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.247-255
    • /
    • 2009
  • This study aims to provide basic data for establishing the safety and health plan by investigating the exposure conditions in the facilities registering business about handling radiations and radioactive isotopes in Korea. dose levels(working space, worker location) of the workers in 153 facilities were measured using surveymeter, and individual exposure concentration[(shallow dose(SD), depth dose(DD)] in 27 facilities using thermal luminescence dosimeter(TLD). In accordance with the measurement results by business type[fire fighting prevention business(FFPB, n=10), financial insurance business(FIB, n=3) and other facilities(n=140)] using surveymeter, those three business type groups showed difference (p<0.000). Dose levels of worker location for FFPB and FIB were significantly higher than 10.0 ${\mu}Sv$/hr, the allowable standard for radiations and radioactive isotopes, and they were higher 109.3 times(p<0.000) and 187.5 times(p<0.000) than those in other facilities. The concentration of TLD[FFPB(n=10), other facility (n=17)] in DD of FFPB was significantly higher than that in other facility(p=0.05). In accordance with the analysis result on relationship between surveymeter and TLD, the dose on working space and worker location(r=0.406, p<0.05), worker location dose and SD(r=0.453, p<0.05), worker location dose and DD(r=0.553, p<0.01), and SD and DD(r=0.927, p<0.001) had all related each other. It is urgently required to change FFPB and FIB from the facilities requiring registration for handling radiations and radioactive isotopes to the facilities that shall get permission for handling radiations and radioactive isotopes by reestablishing the legal administration area, for safety and health of radiation occupants.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.