• Title/Summary/Keyword: Occupant

Search Result 417, Processing Time 0.031 seconds

Study of Restraint System Computational Model and Occupant Behavior for Vehicle Occupant Protection (자동차 승객보호를 위한 안전장치 해석모델 및 승객거동 연구)

  • Han, Kyeonghee;Shin, Jaeho;Kim, Kyungjin;So, Young Myung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2021
  • Vehicle occupant postures are anticipated to vary more widely during automated driving and to become more significant in terms of the autonomous vehicle safety. Experimental and computational approaches are needed to investigate and evaluate occupant behaviors during automated driving in general. However the validity and effect of such occupant postures are unknown, thus it is necessary to examine occupant behaviors and injury countermeasures for various occupant postures. This study was focused on the development and evaluation of restraint system model for occupant behavior examinations in the first step according to autonomous vehicle occupant safety. The finite element models of dummy and restraint system were set up and simulation results showed overall model performance and safety tolerances of different reclined occupant postures during frontal impact loading.

A study of occupant responses in side impact collision (측면충돌시 승객의 거동에 대한 연구)

  • Youn, Y.H.
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.243-251
    • /
    • 1993
  • With the recent issuance of a dynamic side impact test regulation in the Federal Motor Vehicle Safety Standard in the United States of America, many aspects of occupant protection in side impact crashes have been under investigation. Many investigations of real world accidents, crash test results and simulation studies have established that in side impact crashes of passenger cars, thoracic and pelvic injuries of occupant are, large part, caused by occupants' impact against the interior side of the vehicle, primarily the door. This paper is concerned with the development of a lumped mass computer model, which simulates the interaction of a struck car door and an adjacent seated occupant in side impacr, based CTP code which has been successfully used in vehicle and occupant simulation. New model developments include elimination of influence of vehicle side structure stiffness in the occupant injury responses. The model was used to investigated the effect of various door padding characteristics on occupant responses to improve vehicle safety performance. The evaluation of different crush properties of door padding have also focused to understand of behavior of impacted occupant. Results from simulations, The effects of both material coefficients $C_{f}$ and p were illustrated in terms of occupant injury criteria TTI and pelvis.

  • PDF

Data Processing and Numerical Procedures Influencing on Occupant Risk Indices (탑승자 안전지수에 영향을 주는 데이터 처리과정과 수치절차)

  • Kim, Kee-Dong;Ko, Man-Gi;Nam, Min-Kyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.215-226
    • /
    • 2007
  • To verify the performance of roadside barriers, occupant risk indices are calculated from acceleration and angular velocity data of vehicle crash tests. The occupant risk indices to be computed include THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity) and ORA(Occupant Ridedown Acceleration). There is a confusion due to different values of occupant risk indices produced for the same test data because various computational procedures and data processing methods can be applied to compute them. To slove this problem the effects of various numerical procedures and data processing methods on occupant risk indices were investigated. If the sampling rate specified in the guidelines is used for full-scale vehicle crash tests, an interpolation of impact time and numerical integration methods do not result in an appreciable change of THIV and OIV. The way to determine 10msec moving average for PHD and zero offset of data processing should be specified in the guidelines because 10msec moving average and zero offset methods have a significant influence on occupant risk indices.

  • PDF

SIMPLE AND EFFECTIVE METHOD TO PREDICT THE OCCUPANT DYNAMIC RESPONSE UNDER SUDDEN IMPULSE LOADS

  • Elmarakbi, A.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.769-776
    • /
    • 2006
  • A mathematical model is developed in this paper to define the interaction between the occupant and vehicle passenger compartment and to predict the occupant dynamic response during a sudden impulse load. Two different types of occupants are considered in this study, child and adult occupants. The occupants are considered as lumped masses connected to the child seat and vehicle's body masses by means of restraint systems. In addition, the occupant restraint characteristics of seat belt and airbag are represented by stiffness and damping elements. To obtain the dynamic response of the occupant, the equations of motion of the occupants during vehicle collisions are developed and analytically solved. The occupant's acceleration and relative displacement are used as injury criteria to interpret the results. It is demonstrated from the numerical simulations that the dynamic response and injury criteria are easily captured and analyzed. It is also shown that the mathematical models are flexible, useful in optimization studies and it can be used at initial design stage.

Investigation of Evaluation Method for Bus Occupant Safety (버스의 승객안전도 평가방법 연구)

  • Shin, Jaeho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.54-60
    • /
    • 2020
  • In a previous study, an investigation of occupant behaviors and injuries (to the head and chest) was performed during vehicle impact loading cases in order to ensure the safety of wheelchair passengers on a bus. The computational results showed overall safety tolerances of wheelchair occupants under different accident configurations. The bus crashworthiness is described as the capability of a bus to protect occupants during rollover loadings. The residual space containing occupants should be undamaged without any intrusions. However it is necessary to evaluate the residual space according to the bus occupant kinematic analysis under the rollover crash simulation. This study focuses on the evaluation of occupant behaviors during rollover loading cases in order to ensure the safety of bus passengers sitting in general seats and wheelchairs and evaluates the residual space of the bus by analyzing the bus occupant kinematics.

Development of Evaluation Technique for Occupant Safety in KHST by Sled Test (Sled를 이용한 한국형 고속전철 승객안전도 평가 기술개발)

  • 윤영한;구정서
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.205-210
    • /
    • 2001
  • This paper uses a dynamic sled test approach to understand the effects of impact speed on the risk of occupant in KHST. The sled impact tests simulate a predefined accident scenarios. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

  • PDF

Estimation of Injury Severity of Occupant based on the Vehicle Deformation at Frontal Crash Accident (자동차 정면충돌에서 자동차 영구 변형량에 따른 승객 상해 추정)

  • Kim, Seungki;Choi, Hyung Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • The estimation of occupant injury risk at crash accident is one of the most important assessments for the vehicle crashworthiness performance. The design of safety devices such as occupant restraining system also depend on the kinematics of occupant and its injury risk. The real world in-depth accident investigation provides detailed and realistic information of vehicle damage and occupant injury as well as the accident conditions. This paper introduces a statistical analysis of NASS/CDS database and domestic accident data to correlate speed change, vehicle damage extend, and occupant injury at frontal crash. The maximum crush extend shows a linear relationship with the effective impact speed. The injury risks of the occupant with and without restraining were also respectively quantified with the crush extend. This result can be effectively used for the emergent rescue of crash victims with automatic crash notification system.

Design of Occupant Protection Systems Using Global Optimization (전역 최적화기법을 이용한 승객보호장치의 설계)

  • Jeon, Sang-Ki;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.135-142
    • /
    • 2004
  • The severe frontal crash tests are NCAP with belted occupant at 35mph and FMVSS 208 with unbelted occupant at 25mph, This paper describes the design process of occupant protection systems, airbag and seat belt, under the two tests. In this study, NCAP simulations are performed by Monte Carlo search method and cluster analysis. The Monte Carlo search method is a global optimization technique and requires execution of a series of deterministic analyses, The procedure is as follows. 1) Define the region of interest 2) Perform Monte Carlo simulation with uniform distribution 3) Transform output to obtain points grouped around the local minima 4) Perform cluster analysis to obtain groups that are close to each other 5) Define the several feasible design ranges. The several feasible designs are acquired and checked under FMVSS 208 simulation with unbelted occupant at 25mph.

The Influence of Rear-seat Occupants on Front-seat Occupant Fatalities

  • Park, Seong-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.25-36
    • /
    • 1992
  • A possible adverse effect on the likelihood of front-seat occupant fatalities from unbelted rear-seat occupants in frontal crashes is investigated using Fatal Accident Reporting System data. Passenger cars which sustained frontal damage and which did not roll over are included in this analysis. Of the frontally damaged cars, only cars containing a driver and a right-front passenger are selected. Then, from these cars, the following three cases are considered: a) left-rear occupant present, b) right-rear occupant present, and c) no one else in the car. Cars belonging to a) or b) contain only three occupants, and those belonging to the last case contain only two occupants. In addition, all occupants are unbelted. To estimate the influence of rear-seat occupants on front-seat occupant fatalities, relative risks of driver and right-front passenger fatalities are compared pairwise across these three cases. The adverse influence of unbelted rear-seat occupants on the likelihood of unbelted front-seat occupant fatalities in frontal crashes is estimated to be 7.9% ${\pm}$ 45%(the error limits indicate one standard error). In other words, front-seat occupant fatalities are increased 7.9% in frontal crashes due to the loadings from unbelted rear-seat occupants. This suggests that the usage of safety belts by rear-seat occupants not only may extend their own lives but also helps in reducing the fatalities of front-seat occupants seated in front of them.

  • PDF

h Study of Occupant Responses in KHST Croshworthiness (충돌사고 유형에 따른 KHST의 승객거동에 관한 연구)

  • 윤영한;구정서
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.398-404
    • /
    • 1999
  • Safety of passengers in the Korean High Speed Train, KHST, was evaluated under the different accident scenarios. Preliminary occupant analysis has been performed based on the TGV-K train seat characteristics. The influence of the vehicle deceleration and passenger type, seating positions, effectiveness of compartmentalization have been evaluated in terms of occupant injury criteria. This study is the final result of the occupant analysis of KHST project at 1st stage 3rd year.

  • PDF