• 제목/요약/키워드: Obstacle shapes

검색결과 27건 처리시간 0.022초

알루미늄 판재의 성형성 향상을 위한 적외선 국부 열처리법의 곡선형태 적용에 관한 연구 (A Study on the Infrared Local Heat Treatment of Curved Line for Aluminum Alloy Sheet)

  • 이은호;양동열
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.87-92
    • /
    • 2018
  • Auto industries have tried to employ lightweight alloys to improve the fuel efficiency of manufactured vehicles, as the environmental concern becomes an important issue. Even though the aluminum alloy is one of the most appropriate lightweight alloys for auto parts, the low formability of an aluminum alloy has been an obstacle to its application. In order to resolve the low formability problem, a recent study (Lee et al., 2017 [1]) showed that the infrared (IR) local heat treatment can improve the formability with a reduction of heating energy. However, the aforementioned study was limited to only a linear line heating. Since many of the available auto parts as applicable to vehicle manufacturing have a curved line shape, the heating experiments for a curved line should be studied. The possibility of building IR lamps having complex shapes is an advantage of the IR lamp, since it can control the heating shape. This work conducted the IR local heat treatment for the curved line. The experimental results show that the IR local heat treatment can improve the formability of the aluminum alloy for curved line. Additionally, it is shown that the IR local heat treatment also reduces the heating energy when it is compared with the furnace heating which heats a blank as a whole. A numerical simulation with a stress-based forming limit diagram also supports the experimental results.

Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor

  • Kim, Hoe-Woong;Joo, Young-Sang;Park, Sang-Jin;Kim, Sung-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.776-783
    • /
    • 2020
  • As the refueling of a sodium-cooled fast reactor is conducted by rotating part of the reactor head without opening it, the monitoring of existing obstacles that can disturb the rotation of the reactor head is one of the most important issues. This paper deals with the ultrasonic ranging technique that directly monitors the existence of possible obstacles located in a lateral gap between the upper internal structure and the reactor core in a prototype generation IV sodium-cooled fast reactor (PGSFR). A 10 m long plate-type ultrasonic waveguide sensor, whose feasibility has been successfully demonstrated through preliminary tests, was employed for the ultrasonic ranging technique. The design of the sensor's wave radiating section was modified to improve the radiation performance, and the radiated field was investigated through beam profile measurements. A test facility simulating the lower part of the upper internal structure and the upper part of the reactor core with the same shapes and sizes as those in the PGSFR was newly constructed. Several under-water performance tests were then carried out at room temperature to investigate the applicability of the developed ranging technique using the plate-type ultrasonic waveguide sensor with the actual geometry of the PGSFR's internal structures.

Feature-Based Multi-Resolution Modeling of Solids Using History-Based Boolean Operations - Part I : Theory of History-Based Boolean Operations -

  • Lee Sang Hun;Lee Kyu-Yeul;Woo Yoonwhan;Lee Kang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.549-557
    • /
    • 2005
  • The requirements of multi-resolution models of feature-based solids, which represent an object at many levels of feature detail, are increasing for engineering purposes, such as analysis, network-based collaborative design, virtual prototyping and manufacturing. To provide multi-resolution models for various applications, it is essential to generate adequate solid models at varying levels of detail (LOD) after feature rearrangement, based on the LOD criteria. However, the non-commutative property of the union and subtraction Boolean operations is a severe obstacle to arbitrary feature rearrangement. To solve this problem we propose history-based Boolean operations that satisfy the commutative law between union and subtraction operations by considering the history of the Boolean operations. Because these operations guarantee the same resulting shape as the original and reasonable shapes at the intermediate LODs for an arbitrary rearrangement of its features, various LOD criteria can be applied for multi-resolution modeling in different applications.

평면도형의 넓이 학습에서 나타나는 인식론적 장애 (Epistemological Obstacles in the Learning of Area in Plane Figures)

  • 박은률;백석윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권3호
    • /
    • pp.305-322
    • /
    • 2010
  • 평면도형의 넓이 학습에서 나타나는 인식론적 장애의 유형은 크게 측정의 속성과 관련된 장애, 단위정사각형 개념과 관련된 장애로 나눌 수 있다. 먼저, 측정의 속성과 관련된 장애의 원인은 길이와 넓이 개념 사이의 혼동, 도형 영역과 측정 영역에서 정의하는 방법상의 혼동 때문이며, 둘째, 단위정사각형 개념과 관련된 장애의 원인은 학생들에게 단위정사각형이 넓이의 기본단위로 인식이 잘 안되기 때문이며, 2 차원적 평면의 개념이 불완전하게 정착했기 때문이다. 이에 따라, 넓이에 대한 측정의 속성과 관련된 장애 현상의 교정적 지도 방안은 두 속성간의 관계를 살펴볼 수 있는 활동을 제시하고, 측정의 개념으로 넓이를 정의할 필요가 있으며, '정렬(array)'의 개념으로 넓이공식을 유도하고, 통합적으로 공식을 적용하도록 지도할 필요가 있다. 한편, 단위정사각형 개념과 관련된 장애 현상의 지도방안은 각 단계를 충분히 활동할 수 있도록 넓이를 구하고자하는 도형의 소재 및 형태를 다양하게 제시할 필요가 있으며, 넓이에 대한 연속량적 개념을 인식하도록 교수학적 방안을 구안해야 한다.

  • PDF

A Preliminary Study of the Application of Prototyping Tools for Design Education Plans; Focusing on Open Source Microcontroller Boards

  • Nam, Wonsuk
    • International Journal of Advanced Culture Technology
    • /
    • 제6권2호
    • /
    • pp.107-116
    • /
    • 2018
  • In the past, design has been recognized as a means to determine colors, shapes, and functions Recently, however, it has been accepted in a wider sense, namely designing the entire service, including product and user experience design. In this way, in addition to creativity and expressive power that designers have as their main competence, according to the expansion of this design object, designers are required to have comprehensive abilities in related fields and accompanying technical professional abilities. If designing as a technology application as a direction toward this situation, design education can be carried out by approaching technology as a method of expression or design subject. It can also be an effective alternative towards improving the understanding of technology. Meanwhile, many small microcontroller board products with advanced functions and multi-functional specialized programming integrated development environments (IDEs) are becoming widespread due to their open source, low cost, and scalable features. However, students in the design department who lack the basic knowledge of science and engineering have difficulties learning, which requires considerable time and is required for practical use. From this point of view, we have made advancements in the technical understanding of design education by conducting fundamental research to the effectiveness of microcontroller-based prototyping tools as means of expression. We also conducted basic education of microcontroller boards for a certain period of time on students who majored in design in conjunction with the basic survey and investigated the obstacle factors using a questionnaire. Through these surveys, we have confirmed the necessity of designing microcontroller boards of low difficulty, which simplify the coding process that can act as a barrier in difficulty for design students to apply smoothly in design education. In addition, we intend to carry out a basic study on the guideline of microcontroller design for design education and composition of education programs.

가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링 (Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture)

  • 곽민철;여재익
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.315-324
    • /
    • 2012
  • 본 연구는 가연성 기체로서 에틸렌-공기 혼합물로 채워져 있는 관에서 장애물과 굽은 관에 의한 지형적 효과에 따라 변화하는 충격파와 화염의 상호 작용, 화염 가속, 연소폭발천이 현상을 수치적으로 살펴보았다. 여기서 사용되는 모델은 지배방정식으로 Navier-Stokes 방정식과 경계조건 처리 방법으로 ghost fluid 기법을 사용하였으며 지형적 영향을 달리한 여러 모델링을 통하여 화염과 강한 충격파의 충돌에 의한 열점 생성과 화염 전파의 지연 혹은 가속 현상을 확인하였다. 추가적으로 평균 화학적 에너지 발생률이 대략 20 MJ/($g{\bullet}s$)에서 폭굉으로 천이한다는 사실을 확인하였다. 그리고 동일 위치 열점 생성에도 불구하고 폭굉의 발생 시기가 반응물의 부재와 화염면 전방의 온도와 압력 차에 의해 지연될 수 있음을 확인하였다.

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao;Ke Hou;Wenjun Hua;Zehan Shen;Yuliang Chen;Fanwei Meng;Zuen Zheng
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.605-619
    • /
    • 2024
  • The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.