• Title/Summary/Keyword: Observer variation

Search Result 170, Processing Time 0.018 seconds

Robust speed control for DC motor based on sliding mode with a disturbance observer (외란관측기를 갖는 SMC에 의한 DC모터의 강인한 속도제어)

  • JEONG, Tae-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.402-410
    • /
    • 2019
  • This paper deals with the disturbance observer (DOB) based sliding mode control (SMC) for a DC motor to control motor rotating speed precisely and to ensure strong robustness against disturbance including load torque and parameter variation. The reason of steady state error in speed on conventional SMC without DOB is analyzed in detail. Especially, the suggested DOB is designed to prevent measuring noise and harmonics caused by derivative operation on rotating speed. The control performance of the DOB based SMC is evaluated by the various simulations. The simulation results showed that the DOB based SMC had more robust performance than the SMC system without DOB. Especially, precise speed control was possible even though motor parameter variation and load torque was added to the system.

A Study on the Collision Detection for Smart Door by Disturbance Observer (외란관측기를 이용한 스마트도어의 충돌감지에 관한 연구)

  • Park, Min-Kyu;Sung, Kum-Gil;Lee, Byungsoo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.31-36
    • /
    • 2011
  • Smart Door(SD) is a human friendly power-assisted door system for passenger car doors. It offers comfort and safety to passengers and drivers by supplying additional power. In this study, dynamic system model and the equation of motion derivation are derived. And we propose the disturbance observer based collision detection algorithm for safety when opening the door. A disturbance caused by collision has a fast response compared to a friction, uncertainties and so on. The main idea this study is to estimate a variation of disturbance for stably and effectively detecting a collision. In order to evaluate a performance of collision detection, an experiment set up is constructed. The experimental results validate the usefulness of the proposed collision detection algorithm.

Rotor Time Constant Estimation for Induction Motor Direct Vector Control (유도전동기 직접벡터제어를 위한 회전자 시정수 추정)

  • Bae Sang-Jun;Choi Jong-Woo;Kim Heung-Geun;Lee Hong-Hee;Chun Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.413-419
    • /
    • 2004
  • In the induction motor direct vector control system using the Gopinath model flux observer, the deterioration of the dynamic response due to the detuned rotor time constant is investigated. To solve this problem, the on line estimation algorithm of the rotor time constant using model reference adaptive control is proposed. The effect of the motor parameter variation on the rotor time constant estimation is analyzed through experiment. The estimation error due to the parameter variation converges within 5%. Thus applying the proposed algorithm to the Gopinath model flux observer, the robust direct vector control system of the induction motor to the parameter variation can be implemented.

A Study on Digital control of Inverter for UPS based on Disturbance Observer (외란관측기를 가지는 UPS용 인버터의 디지탈제어에 관한 연구)

  • Lee, C.D.;Kim, J.S.;Choi, S.Y.;Lee, J.C.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.606-608
    • /
    • 1996
  • In this paper, a new control scheme based on deadbeat control with disturbance observer for voltage controlled Inverter system is proposed. The inverter system is modelled as the 4th-order system treating R load current variation caused by disturbance. So the disturbance observer exists in the state observer. By using the pole placement strategy, the observer estimates the state and disturbance variable of the next sampling instant. Simulation results so show that The proposed scheme has robust feature against disturbance.

  • PDF

Development of the disturbance observer for micro-stepping X-Y stage (마이크로 스텝핑 평판 스테이지의 외란 예측기의 개발)

  • Kim Jung-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2005
  • The purpose of this study is to design a disturbance observer for a micro-stepping stage to eliminate the disturbances from cables, friction, mass unbalance of the moving part, etc. The disturbance observer is designed for air-floating X-Y precision micro-stepping X-Y stage which widely used in stepper machine or semiconductor manufacturing systems. The micro-stepping X-Y stage has a weak point of the variation of characteristics with position locations, which caused by various disturbances. In this study, it will be described that a simple and high throughput disturbance observer algorithm improves the dynamic error and settling time of the micro-stepping stage.

Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치제어)

  • Ko Jong-Sun;Lee Yong-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.285-288
    • /
    • 2002
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a deadbeat observer To reduce of the noise effect, the post-filter, which is implemented by MA process, is adopted. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller The proposed estimator is combined with a high performance load torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

A Study on Sensorless Control of a PMSM using Sliding Mode Observer in High Speed Range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • 강계룡;김장목;이상혁;황근배;김경훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • An iterative sliding mode observer is proposed to sensorless control of a PMSM(Permanent Magnet Synchronous Motor). The proposed sliding mode observer has the character which is robust to the disturbance and parameters variation. A low pass filter with the variable cut-off frequency is also proposed to compensate the delay of the rotor angle according to the rotor speed, it is led to save memory and minimize operation time. Experimental results show that the proposed sliding mode observer leads to the proper performance.

Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어)

  • 고종선;진달복;이태훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • Go, Jong-Seon;Lee, Yong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM (SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구)

  • Oh Ju-Hwan;Lee Jin-Woo;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.