• Title/Summary/Keyword: Observation Parameters

Search Result 758, Processing Time 0.023 seconds

Alternative analytic method for computing mean observation time in space-telescopes with spin-precession attitude motion

  • Juan, Bermejo-Ballesteros;Javier, Cubas;Francisco, Casas;Enrique, Martinez-Gonzalez
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.449-462
    • /
    • 2022
  • Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan strategy that is usually based on a spin-precession motion. Knowing which regions of the sky will be more observed by the instrument is important for the science operations and the instrument calibration. Computing sky observation parameters numerically (discretizing time and the sky) can consume large amounts of time and computational resources, especially when high resolution isrequired.This problem becomesmore critical if quantities are evaluated at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to discretization limitations. The original approach is based on the analytic expression of the instrument trace over the sky. Such equations are implicit and thusrequiresthe use of numeric solversto compute the quantities.In this work, a new and simpler approach for computing one ofsuch quantities(mean observation time) is presented.The quantity is first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the assumption that the precession motion is slow compared to the spin motion.In this sense, this new approach further simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the implementation and the computing time.

Microscopic Investigation on the Draped Helmet Structure Made of Carbon Fabric Composite (직물 탄소섬유 복합재료 드레이핑 헬멧의 미소변형에 관한 연구)

  • 장승환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.20-23
    • /
    • 2002
  • In this paper, various tow parameters such as equivalent tow thickness, amplitude of longitudinal tow and tow intervals were investigated and compared with each other by using microscopic observation to find out the exact deformation patterns between both directions of the fabric structure (Longitudinal and Transverse Directions). Specimens for the observation were taken from draped helmet which is made of fabric composite (Five Harness Satin Weave). From the observation results, it was found that there are different deformation pattern between tow directions and effect of geometric condition on the deformation of the fabric materials during draping process was verified.

  • PDF

A study on the speech recognition by HMM based on multi-observation sequence (다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구)

  • 정의봉
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

Preliminary results of 86 GHz GMVA observations on AGN

  • Oh, Junghwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2013
  • We present the preliminary results from 86 GHz GMVA observations on 2 AGN - 0954+658 and 0716+714. The observation was taken with the Global mm-VLBI Array in Oct. 2010, with dual polarization mode. The aim of the observation is to produce the polarization maps of the sources, with the Stokes parameters - I, Q, U and V. The final results will be used for estimating the strength of the intrinsic magnetic field and the geometries of AGN jets.

  • PDF

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

Evaluation on Welding Characteristic of Ni-Cu Sheet by Ultrasonic Machining (초음파 가공에 의한 Ni-Cu 박판의 용착 특성 평가)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper is studied on the influence of machining conditions on weldability obtained by ultrasonic machining. The weldability estimation of dissimilar Ni-Cu sheets with the optimization of one-wavelength horn is confirmed by the use of ultrasonic machining. The optimal welding condition with tensile test by setting the ultrasonic machining parameters is suggested and the weldability is estimated by SEM observation and EDX-ray analysis. Experimental studies are worked with the measure of tensile strength and the analysis of SEM photograph after the ultrasonic machining of workpiece. Machining parameters of machining time, pressure, and amplitude are also applied to this paper.

Parameter Estimation of Shallow Arch Using Quantum-Inspired Evolution Algorithm (양자진화 알고리즘을 이용한 얕은 아치의 파라미터 추정)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2020
  • The structural design of arch roofs or bridges requires the analysis of their unstable behaviors depending on certain parameters defined in the arch shape. Their maintenance should estimate the parameters from observed data. However, since the critical parameters exist in the equilibrium paths of the arch, and a small change in such the parameters causes a significant change in their behaviors. Thus, estimation to find the critical ones should be carried out using a global search algorithm. In this paper we study the parameter estimation for a shallow arch by a quantum-inspired evolution algorithm. A cost functional to estimate the system parameters included in the arch consists of the difference between the observed signal and the estimated signal of the arch system. The design variables are shape, external load and damping constant in the arch system. We provide theoretical and numerical examples for estimation of the parameters from both contaminated data and pure data.

A Study on Initial Cell Search Parameters in UMTS Terminal Modem (UMTS 단말기 모뎀의 초기 셀 탐색 파라미터의 영향에 대한 연구)

  • 류동렬;김용석;옥광만;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.267-275
    • /
    • 2003
  • In UMTS terminal modem uses 3 step search procedure for initial cell search, which comprises 1) slot synchronization, 2) code group identification and frame synchronization, and 3) scrambling-code identification. The performance of initial cell search procedure depends on search parameters like observation time and threshold. The purpose of this paper is to get the optimal observation time and threshold of each step for minimum mean acquisition time. In this paper we induce mean detection time of each step and mean acquisition timefrom the model of 3 step search procedure using state diagram. Also we propose initial cell search algorithm which utilize window search method against initial oscillator error, and select an appropriate observation time and threshold of each step by the analysis of simulation and induced result. It is shown that the mean acquisition time in multipath fading channel can be shorter than 500ms by using the determined observation time and threshold of each step.

Micro-Deformation of Tows According to Foam Density and Shear Angle During Hemisphere Draping Process (반구형 드레이핑 공정 중 포움의 밀도와 전단각에 따른 토우의 미세변형)

  • Chung Jee-Gyu;Chang Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.849-856
    • /
    • 2006
  • In this paper, fabric composite draping on hemisphere moulds were studied to find out the deformation behaviour of micro-tow structures of fabrics during draping and thermoforming. Aluminium and PVC foams were used to fabricate the hemisphere moulds for draping tests. In order to observe the local tow deformation pattern during the draping several specimens for microscopic observation were sectioned from the draped hemisphere structures. The effect of forming condition and mould properties on tow deformation was investigated by the microscopic observation of the tow parameters such as crimp angle. Normalization scheme was performed to compare tow parameter variations with different forming conditions. Stress-strain .elations of two different PVC foams (HT70 and HT110) were tested to investigate the effect of foam property on the micro-tow deformation during forming.