• Title/Summary/Keyword: Oblique loading

Search Result 80, Processing Time 0.05 seconds

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

Three dimensional finite element analysis of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible (무치하악에서 임플랜트를 이용한 고정성 및 가철성 보철물의 삼차원 유한요소 분석)

  • Lim, Heon-Song;Cho, In-Ho;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.251-276
    • /
    • 2002
  • The purpose of this study was to compare and analyze the stress distribution and displacement of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible on certain conditions such as number of implants, different design of superstructure. Three dimensional analysis was used and nine kinds of models designed for this study. FEM models were created using commercial software[$Rhinoceros^{(R)}$ (Ver. 1.0 Robert McNeel & Associates, USA)], and analyze using commercial software [Cosmos/$Works^{TM}$(Ver. 4.0 Structural Research & Analysis Corp., US A)]. A vertical load and $45^{\circ}$ oblique load of 17kgf were applied at the left 1st. molar. The results were as follows : (1) In the group of OVD, the displacement was reduced as increasing the number of fixture under vertical loading but there was no specific difference in Von Mises stress. Under oblique loading, the displacement was same at the vertical loading but Von Mises stress was reduced in order of OVD-3, OVD-4, OVD-2. But, bending moment reduced according to increasing the number of fixture. (2) In the group of FBAB, under vertical and oblique loading, the magnitude of Von Mises stress and displacement reduced according to increasing the number of fixtures. FBAB-4 and FBAB-5 showed similar score and distribution, but FBAB-6 showed lower value relatively. (3) In cantilever design, the maximum displacement reduced under vertical loading but increased under oblique loading. However, von mises stresses on fixtures increased under vertical and oblique loading. (4) In comparing OVD-group with FBAB-group, FBAB showed low magnitude of displacement in respect of oblique loading. However OVD-group was more stable in respect of stress distribution.

A COMPARISON OF POST AND CORE TECHNIQUES WITH FINITE ELEMENT ANALYSIS (유한요소법에 의한 Post와 Core 형성법의 비교)

  • Cheong, Yong-Kee;Hur, Bock;Lee, Hee-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.70-86
    • /
    • 1996
  • The purpose of this study was to analyze the stress distribution in mandibular second premolars restored with different post and core techniques. Sixteen two-dimensional finite element model of mandibular second premolars restored with post and core and complete crown were developed according to the diameter, length, and material of post and core. Vertical force, 10N in magnitude, was applied first to the central fossa and then $45^{\circ}$ oblique force of same magnitude was applied to the buccal contact surface of buccal cusp. The obtained results were as follows : 1. Stress distribution within the dentin 1) Regardless of the material of the post and core and the diameter and length of the post, the pattern of stress distribution within the dentin was similar. 2) Maximum dentinal stress was observed on the lingual root surface of alveolar crest level with oblique loading and on lingual side of root dentin at the crown margin on vertical loading. 3) Cast post and cores produced the lowest dentinal stress concentrations and the highest stress concentration was observed in composite resin post and cores. 2. Stress distribution within the post and core 1) Within the amalgam and composite resin post and core, the patterns and maximum values of stress were similar. Maximum stress located at the central fossa of core portion on vertical loading and at the lingual junction of post and core with oblique loading. 2) Among the all post and cores, the cast post and core registered the highest stress concentration and maximum stress value within the post. Maximum stress located at the post apex on vertical loading and at lingual half of the post surface with oblique loading. 3) In case of Para-post and amalgam core, maximum stress located at the central fossa of core portion and lingual tip of the post head on vertical loading. With oblique loading, maximum stress located at the lingual half of the post surface.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF INTERNALLY CONNECTED IMPLANT SYSTEMS (내부연결방식 임플랜트 시스템의 삼차원 유한요소법적 연구)

  • Kim Yu-Lee;Cho Hye-Won;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.85-102
    • /
    • 2006
  • Statement of problem: Currently, there are some 20 different geometric variations in implant/abutment interface available. The geometry is important because it is one of the primary determinants of joint strength, joint stability, locational and rotational stability. Purpose: As the effects of the various implant-abutment connections and the prosthesis height variation on stress distribution are not yet examined this study is to focus on the different types of implant-abutment connection and the prosthesis height using three dimensional finite element analysis. Material and method. The models were constructed with ITI, 3i TG, Bicon, Frialit-2 fixtures and solid abutment, TG post, Bicon post, EstheticBase abutment respectively. And the super structures were constructed as mandibular second premolar shapes with 8.5 mm, 11 mm, 13.5 mm of crown height. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the central pit of an occlusal surface. von Mises stresses were recorded and compared in the crowns, abutments, fixtures. Results: 1. Under the oblique loading, von Mises stresses were larger in the crown, abutment, fixture compared to the vertical loading condition. 2. The stresses were increased proportionally to the crown height under oblique loading but showed little differences with three different crown heights under vertical loading. 3. In the crown, the highest stress areas were loading points under vertical loading, and the finish lines under oblique loading. 4. Under the oblique loading, the higher stresses were located in the fixture/abutment interface of the Bicon and Frialit-2 systems compared to the ITI and TG systems. Conclusions: The stress distribution patterns of each implant-abutment system had difference among them and adequate crown height/implant ratio was important to reduce the stresses around the implants.

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

Finite element analysis of stress distribution on supporting bone of cement retained implant by loading location (하중 위치에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분석)

  • Kim, Kap-Jin
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate the effect of two different oblique mechanical loading to occlusal surfaces of cement retained implant on the stress distributions in surrounding bone, using 3-dimensional finite element method. Methods: A 3-dimensional finite element model of a cement retained implant composed of three unit implants, simplified ceramic crown and supporting bone was developed according to the design of ement retained implant for this study. two kinds of surface distributed oblique loads(100 N) are applied to following occlusal surfaces in the single crowns; 1) oblique load on 2 occlusal points(50N for each buccal cusp, 2 buccal cusps exist), 2) oblique load on 4 occlusal points(25N for each buccal and lingual cusp, 2 buccal and 2 lingual cusps exist) Results: The results of the comparison of the stress distributions on surrounding bone are as follows. In the condition of oblique load on 2 occlusal points, VMS was 741.3 Mpa in the M1(Ø$4.0{\times}13mm$) model and 251.2 Mpa in the M2(Ø$5.0{\times}13mm$) model. It means the stress on the supporting bone is decreased. The results of oblique load on 4 occlusal points are similar to this one. Conclusion: Increasing the diameter of the implant fixture is helpful to distribute the stress on the supporting bone. Also, to obtain the structural stability of the supporting bone, it is effective to distribute the load evenly on the occlusal surface of crown in producing single crown implant.

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.