• Title/Summary/Keyword: Objects Recognition

Search Result 929, Processing Time 0.02 seconds

Design of AI-Based VTS Radar Image for Object Detection-Recognition-Tracking Algorithm (인공지능 기반 VTS 레이더 이미지 객체 탐지-인식-추적 알고리즘 설계)

  • Yu-kyung Lee;Young Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.40-41
    • /
    • 2023
  • This paper introduces the design of detection, recognition, and tracking algorithms for VTS radar image-based objects. The detection of objects in radar images utilizes artificial intelligence technology to determine the presence or absence of objects, and can classify the type of object using AI technology. Tracking involves the continuous tracking of detected objects over time, including technology to prevent confusion in the movement path. In particular, for land-based radar, there are unnecessary areas for detection depending on the terrain, so the function of detecting and recognizing vessels within the region of interest (ROI) set in the radar image is included. In addition, the extracted coordinate information is designed to enable various applications and interpretations by calculating speed, direction, etc.

  • PDF

Repetition Antipriming: The Effects of Perceptual Ambiguity on Object Recognition (반복 반점화: 지각적 모호성이 물체 재인에 미치는 영향)

  • Kim, Ghoo-Tae;Yi, Do-Joon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.603-625
    • /
    • 2010
  • Neural representation of a visual object is distributed across visual cortex and overlapped with those of many other objects. Thus repeating an object facilitates the recognition of the object while it impairs the recognition of other objects. These effects are called repetition priming and antipriming, respectively. Two experiments investigated a new phenomenon of repetition antipriming, in which a repeated object itself is antiprimed. The learning stage presented object pictures which were degraded at various levels. Participants determined how recognizable each object was. Then, the test stage presented the intact version of the object pictures and made participants to perform a categorization task. Both Experiment 1 and 2 found that the processing of the objects that had been recognized were facilitated (repetition priming) while the processing of the objects that had been perceptually ambiguous were impaired (repetition antipriming). These findings suggest that experiencing a perceptually ambiguous object might enhance the connection between feature-level representations and multiple object-level representations, which impairs the subsequent recognition of the repeated object.

  • PDF

Segment Based Recognition of 2-D Partially Occluded Objects (Segment에 근거한 부분적으로 가려진 2차원 물체인식)

  • 김성로;황순자;정재영;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.119-128
    • /
    • 1994
  • In this paper we propose a new method for the recognition of 2-D partially occluded objects. The border of the object is transformed to a curve in arc length-accumulated interior angle plane. The transformed curve of an image is partitioned so that each segment is bounded by the concave interior angles. In order to tolerate shape distortion due to the polygonal approximation of the boundary of the object a group of feature points of the input image are matched with those of model views. The estimation method for positions and orientations of the identified objects objects is presented.

  • PDF

3-D Object Recognition Using a Feature Extraction Scheme: Open-Ball Operator (Open-Ball 피처 추출 방법에 의한 3차원 물체 인식)

  • Kim, Sung-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.821-831
    • /
    • 1999
  • Recognition of three-dimensional objects with convexities and concavities is a hard and challenging problem. This paper presents a feature extraction method out of three-dimensional objects for the purpose of classification. This new method not only provides invariance to scale, translation, and rotation $R^3$ but also distinguishes any three-dimensional model objects with concavities and convexities by measuring a relative similarity in the information space where a set of characteristics features of objects is mapped.

  • PDF

A Study on Detection of Object Position and Displacement for Obstacle Recognition of UCT (무인 컨테이너 운반차량의 장애물 인식을 위한 물체의 위치 및 변위 검출에 관한 연구)

  • 이진우;이영진;조현철;손주한;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.321-332
    • /
    • 1999
  • It is important to detect objects movement for obstacle recognition and path searching of UCT(unmanned container transporters) with vision sensor. This paper shows the method to draw out objects and to trace the trajectory of the moving object using a CCD camera and it describes the method to recognize the shape of objects by neural network. We can transform pixel points to objects position of the real space using the proposed viewport. This proposed technique is used by the single vision system based on floor map.

  • PDF

Dynamic Manipulation of a Virtual Object in Marker-less AR system Based on Both Human Hands

  • Chun, Jun-Chul;Lee, Byung-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.618-632
    • /
    • 2010
  • This paper presents a novel approach to control the augmented reality (AR) objects robustly in a marker-less AR system by fingertip tracking and hand pattern recognition. It is known that one of the promising ways to develop a marker-less AR system is using human's body such as hand or face for replacing traditional fiducial markers. This paper introduces a real-time method to manipulate the overlaid virtual objects dynamically in a marker-less AR system using both hands with a single camera. The left bare hand is considered as a virtual marker in the marker-less AR system and the right hand is used as a hand mouse. To build the marker-less system, we utilize a skin-color model for hand shape detection and curvature-based fingertip detection from an input video image. Using the detected fingertips the camera pose are estimated to overlay virtual objects on the hand coordinate system. In order to manipulate the virtual objects rendered on the marker-less AR system dynamically, a vision-based hand control interface, which exploits the fingertip tracking for the movement of the objects and pattern matching for the hand command initiation, is developed. From the experiments, we can prove that the proposed and developed system can control the objects dynamically in a convenient fashion.

Feature Extraction of the 3-Dimensional Objects with Circular Cross Sections (단면이 원인 3차원 물체의 특징 추출)

  • Cho, Dong-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.866-876
    • /
    • 1996
  • A feature extraction method for the objects that have a circular cross section is proposed.To implement a robust recognition system which can effectively deal with various types of 2-dimensional image and 3-dimensional image, both 2- dimensional information and 3-dimensional information should be collectively extracted and combined for the optimum. For this, this paper presents a feature extraction method for 3-dimensional objects, particularly for the objects with a circular cross section which most objects in the real world are known to have. Firstly, the Z gradient is proposed to extract the shape information from those objects. Using this information, normal vectors are derived from the surface patches. The intersection points between the vectors are applied to the geometric feature extraction.Also, for more accurate recognition, a feature extraction method for between surface regions is proposed.Finally, the extraction method of function information is investigated for the final recognition process.The usefulness of the proposed method is proved through the experimentation.

  • PDF

A Method for Improving Accuracy of Object Recognition and Pose Estimation by Using Kinect sensor (Kinect센서를 이용한 물체 인식 및 자세 추정을 위한 정확도 개선 방법)

  • Kim, Anna;Yee, Gun Kyu;Kang, Gitae;Kim, Yong Bum;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This paper presents a method of improving the pose recognition accuracy of objects by using Kinect sensor. First, by using the SURF algorithm, which is one of the most widely used local features point algorithms, we modify inner parameters of the algorithm for efficient object recognition. The proposed method is adjusting the distance between the box filter, modifying Hessian matrix, and eliminating improper key points. In the second, the object orientation is estimated based on the homography. Finally the novel approach of Auto-scaling method is proposed to improve accuracy of object pose estimation. The proposed algorithm is experimentally tested with objects in the plane and its effectiveness is validated.

3-D Object Recognition Using Surface Normal Images (면 법선 영상을 이용한 3차원 물체 인식)

  • 박종훈;장태규;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.727-738
    • /
    • 1991
  • This paper presents a new approach to explicityly use surface normal images (SNIs) in 3-D object model description and recognition procedure. The surface normal images of an object are defined as the projected images obtained from view angles facing normal to each surface of the object. The proposed approach can significantly alleviate the difficulty of obtaining correspondence between models and scene objects by explicitly providing a transform for the matching. The proposed approach is applied to the construction of a model-based 3-D object recognition system for the selected five objects. Synthetic images are used in the experiment to show the operation of the overall recognition system.

  • PDF

Object Recognition Technology Performance Comparison for Augmented Reality (증강현실을 위한 객체인식 기술 성능 비교)

  • Shin, Eun-ji;Shin, Kwang-seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.348-350
    • /
    • 2021
  • The core technology of augmented reality is object recognition technology. Recently, due to the development of various artificial intelligence algorithms such as CNN, it has become possible to effectively distinguish specific objects from images. It is possible to realize more realistic and immersive augmented reality contents only when technology for recognizing objects quickly and accurately is secured. In this study, an object recognition model using SSD (single shot multibox detector) and an object recognition model using YOLO were compared and evaluated.

  • PDF