• Title/Summary/Keyword: Objects Recognition

Search Result 929, Processing Time 0.02 seconds

A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model (Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법)

  • Kim, Dong-Hwan;Choi, Yu-Kyung;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF

Conversation Context Annotation using Speaker Detection (화자인식을 이용한 대화 상황정보 어노테이션)

  • Park, Seung-Bo;Kim, Yoo-Won;Jo, Geun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1252-1261
    • /
    • 2009
  • One notable challenge in video searching and summarizing is extracting semantic from video contents and annotating context for video contents. Video semantic or context could be obtained by two methods to extract objects and contexts between objects from video. However, the method that use just to extracts objects do not express enough semantic for shot or scene as it does not describe relation and interaction between objects. To be more effective, after extracting some objects, context like relation and interaction between objects needs to be extracted from conversation situation. This paper is a study for how to detect speaker and how to compose context for talking to annotate conversation context. For this, based on this study, we proposed the methods that characters are recognized through face recognition technology, speaker is detected through mouth motion, conversation context is extracted using the rule that is composed of speaker existing, the number of characters and subtitles existing and, finally, scene context is changed to xml file and saved.

  • PDF

Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm (고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법)

  • Huh, Hyunsuk;Kim, Jeong-Jung;Koh, Doo-Yoel;Kim, Chang-Hyun;Lee, Seungchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

The Cognition of Non-Ridged Objects Using Linguistic Cognitive System for Human-Robot Interaction (인간로봇 상호작용을 위한 언어적 인지시스템 기반의 비강체 인지)

  • Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1115-1121
    • /
    • 2009
  • For HRI (Human-Robot Interaction) in daily life, robots need to recognize non-rigid objects such as clothes and blankets. However, the recognition of non-rigid objects is challenging because of the variation of the shapes according to the places and laying manners. In this paper, the cognition of non-rigid object based on a cognitive system is presented. The characteristics of non-rigid objects are analysed in the view of HRI and referred to design a framework for the cognition of them. We adopt a linguistic cognitive system for describing all of the events happened to robots. When an event related to the non-rigid objects is occurred, the cognitive system describes the event into a sentential form and stores it at a sentential memory, and depicts the objects with a spatial model for being used as references. The cognitive system parses each sentence syntactically and semantically, in which the nouns meaning objects are connected to their models. For answering the questions of humans, sentences are retrieved by searching temporal information in the sentential memory and by spatial reasoning in a schematic imagery. Experiments show the feasibility of the cognitive system for cognizing non-rigid objects in HRI.

Isolated Words Recognition using Correlation VQ-HMM (상관성있는 VQ-HMM을 이용한 고립 단어 인식)

  • 이진수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.109-112
    • /
    • 1993
  • In this paper, we propose the modified VQ, applied correlation between codewords in order to reduce the error rate due to personal and speakers' temporal variation. Such a modified VQ is used in the stage of preprocessing of HMM and the temporal variation is absorbed by nonlinear Decimation and Interpolation of vowel part that we obtain higher recognition rate than not so case. The objects of experiment are Korea 142 DDD regional names and we show that the proposed method increase the recognition rate.

  • PDF

Visual Attention Algorithm for Object Recognition (물체 인식을 위한 시각 주목 알고리즘)

  • Ryu, Gwang-Geun;Lee, Sang-Hoon;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.306-308
    • /
    • 2006
  • We propose an attention based object recognition system, to recognize object fast and robustly. For this we calculate visual stimulus degrees and make saliency maps. Through this map we find a strongly attentive part of image by stimulus degrees, where local features are extracted to recognize objects.

  • PDF

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 1. Design and Recognition of Artificial Landmark considering Characteristics of Sonar Images (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 1. 소나 영상의 특성을 고려한 인공 표식물 설계 및 인식)

  • Lee, Yeongjun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposed a framework of recognition and tracking for underwater objects using sonar images as an alternative of underwater optical camera which has the limitation of usage due to turbidity. In Part 1, a design and recognition method for 2D artificial landmark was proposed considering the practical performance of current imaging sonars. In particular, its materials are selected in order to maximize detectability based on characteristics of imaging sonar and ultrasonic waves. It has a simple and omni-directional shape which allows an easy modeling of object, and it includes region based features as identifications. Also, we proposed a real-time recognition algorithm including edge detector, Hough circle transforms, and shape matrix based recognition algorithm. The proposed methods are verified by basin tests using DIDSON.