• Title/Summary/Keyword: Objective clustering

검색결과 227건 처리시간 0.025초

Modeling and Verification of Eco-Driving Evaluation

  • Lin Liu;Nenglong Hu;Zhihu Peng;Shuxian Zhan;Jingting Gao;Hong Wang
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.296-306
    • /
    • 2024
  • Traditional ecological driving (Eco-Driving) evaluations often rely on mathematical models that predominantly offer subjective insights, which limits their application in real-world scenarios. This study develops a robust, data-driven Eco-Driving evaluation model by integrating dynamic and distributed multi-source data, including vehicle performance, road conditions, and the driving environment. The model employs a combination weighting method alongside K-means clustering to facilitate a nuanced comparative analysis of Eco-Driving behaviors across vehicles with identical energy consumption profiles. Extensive data validation confirms that the proposed model is capable of assessing Eco-Driving practices across diverse vehicles, roads, and environmental conditions, thereby ensuring more objective, comprehensive, and equitable results.

NSGA-II를 통한 딤플채널의 다중목적함수 최적화 (Multi-Objective Optimization of a Dimpled Channel Using NSGA-II)

  • 이기돈;압두스 사마드;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

k-Modes 분할 알고리즘에 의한 군집의 상관정보 기반 빅데이터 분석 (A Big Data Analysis by Between-Cluster Information using k-Modes Clustering Algorithm)

  • 박인규
    • 디지털융복합연구
    • /
    • 제13권11호
    • /
    • pp.157-164
    • /
    • 2015
  • 본 논문은 융복합을 위한 범주형 데이터의 부공간에 의한 군집화에 대해서 다룬다. 범주형 데이터는 수치형 데이터에만 국한되지 않기 때문에 기존의 범주형 데이터들의 평가척도들은 순서화(ordering)의 부재와 데이터의 고차원성과 희소성으로 인하여 한계를 가지기 마련이다. 따라서 각각의 군집에 존재하는 범주형 속성들의 상호 유사도을 보다 근접하게 측정할 수 있는 조건부 엔트로피 척도를 제안한다. 또한 군집의 최적화를 위하여 군집내의 발산을 최소화하고, 군집간의 독립성을 향상시킬 수 있는 새로운 목적함수를 제안한다. 제안된 알고리즘의 성능을 4개의 알고리즘과 비교검증하기 위하여 5가지의 데이터에 대하여 실험을 수행하였다. 비교검증을 위한 평가척도는 정확도, f-척도와 적응된 Rand 색인이다. 실험을 통하여 제안된 방법이 평가척도에 의한 결과에서 기존의 방법들보다 좋은 성능을 보였다.

대사증후군 구성요인의 군집별 변화 양상 (The change patterns of the Clustering of metabolic syndrome)

  • 김영란;천해경;이태용
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.526-537
    • /
    • 2016
  • 연구목적: 본 연구는 대사증후군 구성요인의 군집별 변화양상과 군집별 조합 중에서 가장 많이 분포된 조합들을 파악하여 대사증후군을 예방하고자 시행하였다. 연구방법: 2009년부터 2013년까지 총 2회 검진을 받은 1900명을 대상으로 하였고, 대사증후군의 변화를 살펴보기 위해 정상군과 대사증후군으로 진단된 군 두군으로 나누어 코호트연구를 시행하였다. 연구결과: 대사증후군 구성요인의 조합 상태에 따라 대사증후군 진단율에 영향을 미치는 순서는 2개의 조합에서는 TG+HDL, TG+FBS순이고, 3개의 조합은 WC+TG+HDL, TG+BP+FBS순이었고, 4개의 조합은 WC+TG+HDL+BP, WC+TG+HDL+FBS의 순이었다. 결론: 대사증후군을 예방하기 위해서는 대사증후군 진단율에 영향을 주는 조합을 고려하여 대사증후군 고 위험군을 찾아내어 관리하는 보건프로그램이 필요할 것이다.

정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계 (Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation)

  • 박호성;진용하;오성권
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

경계변수 값의 동적인 변경을 이용한 점층적 클러스터링 알고리즘 (Incremental Clustering Algorithm by Modulating Vigilance Parameter Dynamically)

  • 신광철;한상용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권11호
    • /
    • pp.1072-1079
    • /
    • 2003
  • 본 논문은 점층적으로 대규모 문서 분류를 할 수 있는 새로운 클러스터링 알고리즘에 대한 것으로, 고차원의 대규모 문서 집합에 대한 클러스터링을 수행하는 spherical k-means (SKM) 알고리즘과 점층적인 방식으로 클러스터링을 수행하는 퍼지(fuzzy) ART(adaptive resonance theory) 신경망의 특징을 이용하였다. 즉, SKM의 벡터 공간 모델과 개념벡터를 토대로 퍼지 ART의 경계변수의 개념을 결합한 것이다. 제시하는 알고리즘은 점층적 클러스터링의 지원과 함께 최적의 클러스터 수를 자동으로 결정할 뿐 아니라 이상치(outlier)와 노이즈(noise)에 의한 overfitting의 문제도 해결하였다. 또한 생성된 클러스터들의 질을 평가할 수 있는 응집도를 측정하는 목적 함수의 값에 있어서도 CLASSIC3 데이타 집합으로 실험한 결과 기존의 SKM에 비해 평균 8.04%의 향상된 응집도를 나타냈다.

클러스터링 기법을 이용한 하이브리드 영화 추천 시스템 (Hybrid Movie Recommendation System Using Clustering Technique)

  • 싯소포호트;펭소니;양예선;일홈존;김대영;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.357-359
    • /
    • 2023
  • This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.

과거이력자료를 활용한 요일별 패턴분류 알고리즘 개발 (Development of a Daily Pattern Clustering Algorithm using Historical Profiles)

  • 조준한;김보성;김성호;강원의
    • 한국ITS학회 논문지
    • /
    • 제10권4호
    • /
    • pp.11-23
    • /
    • 2011
  • 이 연구는 시계열 과거 속도자료를 활용하여 유사한 패턴 변화를 보이는 요일을 그룹핑하는 알고리즘을 개발하였다. 알고리즘에 적용할 이력자료 시간적 범위는 과거 2개월치 자료를 사용하였으며, 공간적 범위는 도시부도로를 대상으로 하였다. 이 연구에서 제안한 알고리즘은 크게 거시적인 관점과 미시적인 관점으로 나누어 요일별 패턴분류를 수행하였다. 먼저 거시적인 관점에서 요일별 첨두/비첨두 시간대와 요일별 속도변화가 크게 나타나는 중점시간대를 도출하였다. 미시적인 관점에서는 거시적인 관점에서 도출된 중점시간대를 대상으로 요일간 속도 차이를 개별(요일별) 혹은 그룹간의 유사성을 비교하여 단계적으로 분류하는 2단계 속도 군집 알고리즘(Two-step speed clustering algorithm, TSC)을 개발하였다. TSC 알고리즘은 중점시간대의 매 가공주기(또는 제공주기)마다 요일별(월~일) 속도차이를 토대로 그룹핑하는 1단계와 1단계에서 도출된 각 그룹의 평균과 요일간의 속도차이를 비교하여 재할당하는 2단계로 구성된다. TSC 알고리즘은 실제 지점검지기에서 수집된 시간대별 시계열 자료를 토대로 개발 및 성능평가가 수행되었다. 따라서, 교통정보센터에서 수집 가공 저장되는 과거이력자료를 이용하여 요일별 패턴분류 수행이 가능하고 알고리즘 구현도 실제 가공체계에 적용하기 용이하다. 이 연구에서 제안한 알고리즘은 통행패턴기반 정보가공 알고리즘 개발, 요일별 반복정체구간 운영관리, TOD에 근거한 신호운영 개선 등 교통운영 및 관리 전반에 적용이 가능하다.

공조 시스템의 고장진단을 위한 분류기술 연구 (Classification Methods for Fault Diagnosis of an Air Handling Unit)

  • 이원용;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.420-422
    • /
    • 1998
  • All Fault Detection and Diagnosis(FDD) methods utilize classification techniques. The objective of this study was to demonstrate the application of classification techniques to the problem of diagnosing faults in data generated by a variable-air-volume(VAV) air-handling unit(AHU) simulation model and to describe the characteristics of the techniques considered. Artificial neural network classifier and fuzzy clustering classifier were considered for fault diagnostics.

  • PDF

데이터마이닝 방법을 응용한 휴리스틱 알고리즘 개발 (Development of Heuristic Algorithm Using Data-mining Method)

  • 김판수
    • 산업경영시스템학회지
    • /
    • 제28권4호
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents a data-mining aided heuristic algorithm development. The developed algorithm includes three steps. The steps are a uniform selection, development of feature functions and clustering, and a decision tree making. The developed algorithm is employed in designing an optimal multi-station fixture layout. The objective is to minimize the sensitivity function subject to geometric constraints. Its benefit is presented by a comparison with currently available optimization methods.