• Title/Summary/Keyword: Object-based model

Search Result 2,210, Processing Time 0.034 seconds

Object tracking algorithm of Swarm Robot System for using Polygon based Q-learning and parallel SVM

  • Seo, Snag-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.220-224
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Parallel SVM algorithm for object search with multiple robots. We organized an experimental environment with one hundred mobile robots, two hundred obstacles, and ten objects. Then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning, and dodecagon-based Q-learning and parallel SVM algorithm to enhance the fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process. In this paper, the result show that dodecagon-based Q-learning and parallel SVM algorithm is better than the other algorithm to tracking for object.

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

OQL/Geo : An object- oriented spatial query language for Geographic Information Systems (OQL/Geo : 지리 정보 시스템을 위한 객체지향 공간 질의어)

  • 김양희;김명선;권석형;정창성
    • Spatial Information Research
    • /
    • v.3 no.2
    • /
    • pp.191-204
    • /
    • 1995
  • The data model is a system model which abstracts the spatial and nonspatial fea¬tures of the real world. A system defines through its data model a framework for the inner rep¬resentation of and connections with the outside world. The spatial query language is one of the most efficent framework for defining connection with outside world in the GIS. Existing GIS uses a spatial data model based on relational data model. Therefore, it has some difficulties in data abstraction and representing complex objects through inheritance. In this paper, we pro-pose an object oriented data model-Topological Object Model(TOM). TOM combines object model in ODMG and the planer topological object. Based on this model, we present an object-oriented spatial query language-OQL/Geo. OQL/Geo extends OQL in ODMG and represents TOM effectively. It also provides several operators such as geometric, topological and visible ope-rators. Moreover, it represents with diverse flexivility the request for complex spatial analysis and presentation of query results.

  • PDF

Design and Implemetation of an Object-Relational Geographic Information System based on a commercial ORDB (상용 ORDB를 하부구조로 갖는 객체관계형 지리정보 시스템의 설계 및 구현)

  • 윤지희
    • Spatial Information Research
    • /
    • v.5 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • This paper presents the design and implementaion of an object-relational geographic information system. This system has been developed on top of a commercial object-relational database management system. It provides flexible spatial data model, spatial query language, visual user interface, and efficient spatial access methods(D0T) in which traditional primary-key access methods can be applied. We report on our design choices and describe the current status of Implementation. The conceptual model of the system is based on SDTS, and is mapped to the intemal obiect-oriented data model. Kevwords : object-oriented data model, GIS, spatial data model, spatial access method.

  • PDF

An Object Extraction Technique for Object Reusability Improvement based on Legacy System Interface (객체 재사용성 향상을 위한 레거시 시스템 인터페이스 기반 객체추출 기법)

  • 이창목;유철중;장옥배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1455-1473
    • /
    • 2004
  • This paper suggests a technique, TELOR(Technique of Object Extraction Based on Legacy System Interface for Improvement of Object Reusability) for reuse and reengineering by analyzing the Legacy System interface to distill the meaningful information from them and disassemble them into object units which are to be integrated into the next generation systems. The TELOR method consists of a 4 steps procedure: 1) the interface use case analysis step, 2) the interface object dividing step, 3) the object structure modeling step, and 4) the object model integration step. In step 1, the interface structure and information about the interaction between the user and the Legacy System are obtained. In step 2, the interface information is divided into semantic fields. In step 3, studies and models the structural and collaborative relationship among interface objects. Finally, in step 4, object model integration step, integrates the models and improves the integrated model at a higher level. The objects integration model created through TELOR provides a more efficient understanding of the Legacy System and how to apply it to next generation systems.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

Object Recognition Using Planar Surface Segmentation and Stereo Vision

  • Kim, Do-Wan;Kim, Sung-Il;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1920-1925
    • /
    • 2004
  • This paper describes a new method for 3D object recognition which used surface segment-based stereo vision. The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its post processing is used for building models. Matching is initially performed using the model and object features, and calculate roughly the object's position and orientation. Though the fine adjustment step, the accuracy of the position and orientation are improved.

  • PDF

Octree model based fast three-dimensional object recognition (Octree 모델에 근거한 고속 3차원 물체 인식)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

Wavelet transform-based hierarchical active shape model for object tracking (객체추적을 위한 웨이블릿 기반 계층적 능동형태 모델)

  • Kim Hyunjong;Shin Jeongho;Lee Seong-won;Paik Joonki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1551-1563
    • /
    • 2004
  • This paper proposes a hierarchical approach to shape model ASM using wavelet transform. Local structure model fitting in the ASM plays an important role in model-based pose and shape analysis. The proposed algorithm can robustly find good solutions in complex images by using wavelet decomposition. we also proposed effective method that estimates and corrects object's movement by using Wavelet transform-based hierarchical motion estimation scheme for ASM-based, real-time video tracking. The proposed algorithm has been tested for various sequences containing human motion to demonstrate the improved performance of the proposed object tracking.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF