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Abstract: This paper describes a new method for 3D object recognition which used surface segment-based stereo vision.

The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are

multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its

post processing is used for building models. Matching is initially performed using the model and object features, and calculate

roughly the object’s position and orientation. Though the fine adjustment step, the accuracy of the position and orientation

are improved.

Keywords: object recognition, vision, segmentation, model-based, stereo camera

1. Introduction

Vision is the best ability among human’s perception. It pro-

vides us information of the environment without contact-

ing an object. Computer vision is application of human’s

vision to a machine. One of the active research fields in

computer vision is the object recognition in robotics and the

computer vision researcher keep growing their interest. Com-

puter vision gives an efficient and simple 3D object sensing

tool to autonomous robot system without extra equipment

and make the robot recognize an object.

When designing a recognition system, it is very important

to decide what type of sensor will be used. We used stereo

vision as the the sensor for 3D object recognition systems.

Although stereo vision is a typical technique for sensing 3D

information from intensity images, it is not often used in

3D object recognition because it has been considered inad-

equate for reconstructing the dense and accurate 3D data.

However, stereo vision is suitable for object recognition if it

is designed well, that is fast enough to create the range image

containing 3D information of the scene. Yuns Oh suggest a

new fast stereovision algorithm for stereo vision using VLSI

method[2]. It makes our vision system to be directly used at

3D object recognition.

Even though it is reasonable to use stereo vision for object

recognition, there have been very few researches. TINA[6]

and VVV[5] systems are the two of few examples. Both

systems use edge-based stereo vision. Two intensity images

from the two camera with different view points are obtained

and the edge images are extracted. Edge-based depth map

is reconstructed using the correspondence between them. It

is matched to a 3D wire frame model. But our system is

different. We construct the disparity map using our stereo

vision system, and reconstruct whole 3D data of a scene. Us-

ing the planar surface segmentation method of the 3D scene

data, we recognize the pose and orientation of an object.

The advantage of our system is that we use whole data from

a stereo vision not a local information,i.e. edge.

The object recognition begins with designing appropriate

models. It depends on the object to be represented and

the algorithms how to choose the method of model repre-

sentations. Generally, model-based object recognition uses

two kind of model representation, feature-based model and

appearance-based model.

Feature-based models represent 3D objects through features,

their type, and their spatial relations. The identification

means finding a set of features which is uniquely distinc-

tive for an object. And, location is to match a number of

image and object features and solve for the position and ori-

entation of the 3D object. The advantage of feature-based

models is that they generate compact object descriptors, of-

fer some robustness against occlusion, and some invariance

against illumination and pose variations. A disadvantage is

that they cannot be compared directly with images and re-

quire feature extraction and object descriptions is obviously

time-consuming and requires detailed knowledge of the in-

ternal structure of the object recognition system.

Appearance-based models represent an object through one or

more images in eigenspaces method. Models are constructed

using prototypical features and extracted from images of the

to be model. Recognition means to find the image in a model

set which is most similar to the one to recognize. The ad-

vantage is that images and models can be compared directly,

and objects with no features. Disadvantages is that illumi-

nation, pose and location variations change the images.

In this paper, we choose the feature-based model. The ob-

jects,coil shaped object and cube, of our system are sim-

ple and they can be represented easily using the commercial

CAD program. CAD provides a quick and compact object

representation.

Our object recognition method is 3D planar surfaces extrac-

tion by segment-based stereo vision using range image that

contains 3D information. Four research groups from Uni-

versity of South Florida(USF), Washington State Univer-

sity(WSU), University of Bern(UB) and University of Ed-

inburgh(UE) have invented their range segmentation algo-

rithm. The USF and UE algorithms are one the common

approach to region segmentation by iteratively growing from

seed regions. The WSU algorithm uses a powerful cluster-

ing and merging algorithm using surface properties. The

UB algorithm uses another approach that exploits the scan

line structure of the image. However, in this case no higher

level processing for matching was proposed. In this paper,
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Fig. 1. The Geometry of Stereovision

we proposed a new range segmentation algorithm and 3D

object recognition method. The range image is segmented

using the two-dimensional histogram method based on a di-

rection of normal vector of each 3D data point.

2. 3D Reconstruction
2.1. Stereo vision

Stereo vision refers to the ability to infer information on the

3D structure and distance of scene from two or more images

taken from different viewpoints. It is one of the techniques

to calculate the depth or distance information of the scene.

Using the geometrical relationship between the two cameras

and the location of the feature in each image, the disparity is

obtained from solving the correspondence problem between

the observed images. Correspondence problem is to deter-

mine the corresponding points among the images in the same

scene with different view points. Yuns Oh suggests a new

fast stereovision algorithm with Stereo Matching Chip using

trellis-based stereo matching method [2]. It solves the corre-

spondence problem and calculate the values of the disparities

in 3D scene optimally. Two digital images are obtained to-

gether and produce the disparity image.

The geometry of stereo vision is shown in Fig.1 xL and

xR are projected points in left and right camera image co-

ordinate respectively. And let (xC , yC) is the middle image

coordinate.

xC = xR + xL + 1 (1)

and yC is assumed same as left and right image plane.

If the scene point P is mapped into two image planes, the

disparity is the difference between the two imagery points[2].

d = xR − xL (2)

The disparity map can be converted to a 3D data points.

Using the center imaginary coordinate and the disparity

(xC , yC , d), the data point,(x, y, z), in the world coordinate

is calculated. The scene data shown in the disparity map is

calculated by the following geometric equation.

A = tan θ(
λ2

x

4F 2
(N − xC)2 + 1) + (1 − tan2 θ)

λx

2F
d

− tan θ
λ2

x

4F 2
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x =
B

2

λx
2F
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A
(0 ≤ xC ≤ 2Iw + 1, 0 ≤ yC ≤ M − 1)

In this equation, N and M is image and hight respectively,

λx and λy means the image cell x-size and y-size, F is the

focal length, B is the base line length that is the length

between the left and right focal point, the each unit cell size

of the camera image is αx, αy

. The distance measurement resolution is following.

∆z =
αx(z)2

FB − αxz
(4)

If the distance z is almost invariant, the distance measure-

ment resolution is changed on by adjusting (F, B), because

αx is the horizontal size of the camera unit cell parameter

that it can not be changed. If F is increased, the resolution

is improved but the scene dimension of camera is decreased.

If B is enlarged, the resolution also is improved. But it can

make the value of d bigger than the maximum value allowed

in the system.

2.2. 3D data reconstruction from disparity image

Using the two stereo cameras and stereo matching board, we

get the disparity image. The image size is 2561×1000 pixels.

It contains a lot of salt and pepper noise. To remove the

noise we perform median filtering as a low-level processing.

We exclude 200 columns from the both the end of the left

and right side, because there is no disparity. Fig.2.

The 3D data is reconstructed using the Eqn. 3. The camera

parameters are already calibrated. To reduce the consuming

time, we sample the image data every five column and row.

Fig.3.

Fig. 2. Disparity image.

Fig. 3. Reconstructed 3D data from disparity image.
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3. Planar Surface Segmentation and Object
Features

3.1. Planar surface propriety

In this section, we describe a method of calculating surface

normals that will be used in segmentation. If a surface can

be represented by a function which has derivatives within a

certain boundary, the normal can be calculated within the

boundary. A tangent plane is defined at an object surface

point P = (x, y, z). Assume that the surface satisfies a spe-

cific conditional equation F (x, y, z) = 0 in the local neigh-

borhood of point P, and that this equation is partially differ-

entiable with respect to P (x, y, z). In a small neighborhood

of a point (x, y, z), the unit normal N = N(x, y, z) can be

calculated by the equation,

N(x, y) =
∇F (x, y, z)

‖∇F (x, y, z)‖ (5)

where ∇ represents the gradient operator. Since we assumed

F (x, y, z) is C1, first order Taylor approximations can be

made within a small boundary around point (x, y, z). In this

case, the first order equations describe a plane. If x is a point

on the plane, then x ·N = 1. Then the plane equation can be

represented as F (x, y, z) = ax + by + cz = 1. The constants

a,b and c can be found by the equation,

a =
∂F (x, y, z)

∂x
= lim

∆x→0

F (x + ∆x, y, z) − F (x, y, z)

∆x
(6)

b =
∂F (x, y, z)

∂y
= lim

∆y→0

F (x, y + ∆y, z) − F (x, y, z)

∆y

c =
∂F (x, y, z)

∂z
= lim

∆z→0

F (x, y, z + ∆z) − F (x, y, z)

∆z

then an approximation to a is,

a = P (x(i + 1, j), y(i, j), z(i, j)) − P (x(i, j), y(i, j), z(i, j)) (7)

, in this equation, i and j are the index of row and column

of disparity image and P (x(i, j), y(i, j), z(i, j)) is calculated

from pi,j that is a point of disparity image. Since this calcu-

lation is noise sensitive, we modify the operator so that it re-

duces the noise sensitivity by using linear least-squares meth-

ods of four locations around pi,j ,i.e. pi−2,j , pi+2,j , pi,j−2 and

pi,j+2.

3.2. Histogram method for planar surface segmenta-

tion

The purpose of a histogram is to graphically summarize the

distribution of a univariate data set. The most common

form of the histogram is obtained by splitting the range of

the data into equal-sized bins,an interval into which a given

data point does or does not fall. Then for each bin, the

number of points from the data set that fall into each bin

are counted. The bins can either be defined arbitrarily by

the user or via some systematic rule. The histogram graphi-

cally shows center, spread, skewness and presence of outliers

data. These features provide strong indications of the proper

distributional model for the data set.

Surface normals can be easily calculated from linear least-

squares methods. After the normalization, only two com-

ponents of the resulting vector are relevant. The surface

Fig. 4. Representation of normal vector in sphere coordi-

nates.

Fig. 5. Two-dimensional histogram.

normals are represented as a pair of angles (ϕ, φ) in sphere

coordinates, as shown in Fig.4.

The angles can be calculated as follows,

ϕ = arctan(
ny

nx
) (8)

θ = arcsin(nz)

By combining them in a two-dimensional histogram, we can

obtain highly discriminative classifiers without having to

solve a segmentation problem. All pairs of angles (ϕ, φ) of

scene data is calculated and voted at the two-dimensional

histogram shown in Fig.5. If some data points are from same

surface plane, they have similar normal vectors. The points

are fell into same bins and coarsely segmented into same re-

gion. The main motivation of histogram method is its low

computational cost. Since similar surface patches are as-

signed to the same histogram cells, there is no need to extra

segmentation process.

3.3. Building two-dimensional histogram

Before building the histogram, the normal vector should be

assigned at each point. We use Pi,j = (x(i, j), y(i, j), z(i, j))

and around four neighborhood points, i.e. Pi−2,j , Pi,j−2, Pi+2,j

and Pi,j+2, where ’i’ and ’j’ are row and column index of the

disparity image. The surface normal vector is uniquely iden-

tified using the linear least-squares method. If a point, Pi,j

, is jump edge or crease edge, the patch surface plane from

the Pi,j and its neighborhood is not a planar surface. In this

case, the point Pi,j is disregarded. Fig.6. shows 3D data

points with their normal vectors.

We use the two-dimensional histogram to coarsely segment

the sets of points which are in the same planar surface. The

two bins of histogram are θ and ϕ from Eqn.8, and they

are digitized according to one degree. All the points except

for edge points are voted into histogram. All counts data
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that is exceeded a certain threshold are selected for the next

step. We select counts data that is over 50. Fig.7 shows

two-dimensional histogram.
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Fig. 6. 3D data with normal vector.
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Fig. 7. Two-dimensional histogram with real data.

3.4. Planar surface segmentation

Using the distribution data sets of histogram, the planar

surface is segmented. A data set represents a part of data

points which are in a same planar surface.

Step1 All data points from a point of two-dimensional his-

togram are selected. They are formed a point set. Fig.8

shows a selected data points from histogram.

Step2 If all points in the set do not lie in the same planar

surface, the set is disregarded. Otherwise a planar surface is

built using all points of the point set.

Step3 Among all 3D scene data points, all points are selected

if they are inside the planar surface.

Step4 Step1-3 is applied to all points in a two-dimensional

histogram. Fig.9 shows the result.

Step5 Similar planar surfaces are merged. Even though

many planar surfaces are segmented, some of the surfaces

are from same planar surface. They are merged into one

surface. A surface normal vector and mean value of the data

set are used in this step. Fig.10 shows the result.
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Fig. 8. Candidate surface from histogram.
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Fig. 9. Candidate surface from all data.
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Fig. 10. Selected plane.

3.5. Assigning object features

In this step, object features are assigned to the segmented

surface plane. Using the object features, the position and

orientation of scene object is roughly determined. The ob-

ject features consist of one feature point and three feature

vectors. The feature point is defined at the most outer point

from the mean point. The first feature vector is the surface

normal. It is already known. The second feature vector is

the unit vector from the feature point to mean point. The

last feature vector is the cross product of the previous two

features vectors. Fig.1 shows object features and segmented

planar surface data points.
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Fig. 11. Assigning object features.

4. Matching
4.1. Object Model

Once the appropriate descriptions are derived from the ob-

ject scene data and the appropriate model, matching is done

to recognize the object and its pose. It is performed in two

steps, initial matching and fine adjustment.
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Fig. 12. Coil object model.
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Fig. 13. Coil model features.

4.2. Initial matching

The purpose of the initial matching is to generate hypothe-

ses of correspondences between model features and data fea-

tures. The candidates for the position and orientation of

an object are roughly calculated from the hypotheses. The

object’s position and orientation are expressed as a 4 × 4

transformation matrix, T =

(
R t

0 0 0 1

)
, where R is

a 3 × 3 rotation matrix and t is a 3D translation vector.

Fig.14(Left) shows the movement of a model features(with

subscript M) to an object features(with subscript D), where

each features is expressed by three unit vectors V 1, V 2 and

V 3 from a feature point P . The rotation matrix R′ and the

translation vector t′ are uniquely calculated from the follow-

ing formulas,

t′ = PD − PM (9)

V 1D = R′ V 1M

V 2D = R′ V 2M

V 3D = R′ V 3M

A single pair of model features fixes a transformation. Fig.15

Fig. 14. Initial matching(Left) and Fine adjustment(Right).

shows a result of initial matching.

4.3. Fine adjustment

The fine adjustment process evaluates the validity of the hy-

potheses generated in the initial matching stage, and im-

proves the accuracy of the transformation by an iteration

method.

After the model is moved by an initial matching result T ′, all

model points on the observable side of the object are selected
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Fig. 15. Initial matching.

with satisfying the following equation,

(P − O) · N ≤ 0 (10)

where P is the position of the model point, N is its normal

direction, and O is camera position.

Next, we search for data points corresponding to the selected

model points. If the 3D distance between the object point

and the model point does not exceed a threshold value, the

object point which has minimum distance among the model

points is regarded as corresponding point to the model point.

The optimum transformation parameters T” =

(
R” t”

0 0 0 1

)

which move PMi , i.e. initial matched model points, to PDi

can be estimated by minimizing the following error ε,

ε =
1

n

n∑
i=1

dist(R′′ PMi + t′′ − PDi) (11)

T = T ′′ T ′ denotes the adjusted transformation. When the

error ε is not small enough or the number of pairs n is few

compared to the total number of selected model points, T is

verified. T derived from the minimum ε is the final optimum

transformation. From the result transformation T , we know

the position and pose of the object. Fig.15 and Fig.16 show

the fine adjustment result.
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Fig. 16. Fine adjustment.

5. Experiment
5.1. Experimental equipment

Our recognition system consists of three parts,i.e. stereo

CCD camera set, stereo matching part and 3D object recog-

nition algorithm part.
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Fig. 17. Result.

Table 1. Positional errors.

x(mm) y(mm) z(mm) ϕ (deg.) θ (deg.)

Error 2.9 4.0 6.2 2.1 1.6

The stereo matching board is made up of integration of

FPGA, PCI interface and camera interface. It can be put in

PCI slot at personal computer. FPGA module play an im-

portant role, computing and transferring a data to generate

the disparity image, of the stereo matching board. And, It

communicate with PC and camera using PCI and camera in-

terface. Disparity image is produced at 15 frame per second

of speed, 1280 × 100 of size and 200 level of 8bit gray scale

disparity. The stereo CCD camera set consist of two zoom

lens, the CCD cameras and camera mount equipment. Our

CCD camera is PULNIX TM1320-15CL. It support high-

resolution, high-speed progressive scan 1300(h)×1030(v) in-

terline transfer CCD imager and 15 frames per second. Cam-

era mount equipment is manually designed

5.2. Experimental results

Models for this experiment were built using the CAD-based

modelling. The two models have around 2000 points and

normal vectors at each point. The distance between neigh-

borhood two points is about 5 mm.

We used one coil shaped object to evaluate the positional

error of our recognition algorithm. The center of the pla-

nar surface is used. We measured the spacial the position

of XY Z-coordinate and the rotation of planar surface nor-

mal vector. The rotation of the object is represented as two

angles that is follows the same way with representation of

normals in sphere coordinates, Fig.4. The results are shown

in Table 1. The average position error of the XY Z-positions

are 2.9 mm, 4.0 mm and 6.2 mm. The rotational error ϕ

and φ are 2.1 deg. and 1.6 deg. We let our PARA robot pick

and place the object, then we know that the result is accu-

rate enough for a robot manipulator to treat the recognized

object.

6. Conclusion
We propose a new method for 3D object recognition. We

used the stereo vision system to sense a 3D scene object. The

3D points of the object are reconstructed from the dispar-

ity image. Planar surface is segmented and object features

are assigned for matching. We used CAD-based modelling.

Fig. 18. Experimental result: A cube and a coil.

Matching process of our recognition system divided into two

step. In initial matching, the position and orientation of ob-

ject is roughly estimated. And they are improved through

fine adjustment step. Our recognition system can recognize

multiple objects at a same time and partially occluded ob-

ject.

Our recognition system can be improved by extending the

planar surface segmentation to generalized surface segmen-

tation, and developing fast matching algorithm.
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