• 제목/요약/키워드: Object-based model

검색결과 2,235건 처리시간 0.029초

인간의 지각적인 시스템을 기반으로 한 연속된 영상 내에서의 움직임 영역 결정 및 추적 (Object Motion Detection and Tracking Based on Human Perception System)

  • 정미영;최석림
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2120-2123
    • /
    • 2003
  • This paper presents the moving object detection and tracking algorithm using edge information base on human perceptual system The human visual system recognizes shapes and objects easily and rapidly. It's believed that perceptual organization plays on important role in human perception. It presents edge model(GCS) base on extracted feature by perceptual organization principal and extract edge information by definition of the edge model. Through such human perception system I have introduced the technique in which the computers would recognize the moving object from the edge information just like humans would recognize the moving object precisely.

  • PDF

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF

고속 푸리에 합성곱을 이용한 파지 조건에 강인한 촉각센서 기반 물체 인식 방법 (Tactile Sensor-based Object Recognition Method Robust to Gripping Conditions Using Fast Fourier Convolution Algorithm)

  • 허현석;김정중;고두열;김창현;이승철
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.365-372
    • /
    • 2022
  • The accurate object recognition is important for the precise and accurate manipulation. To enhance the recognition performance, we can use various types of sensors. In general, acquired data from sensors have a high sampling rate. So, in the past, the RNN-based model is commonly used to handle and analyze the time-series sensor data. However, the RNN-based model has limitations of excessive parameters. CNN-based model also can be used to analyze time-series input data. However, CNN-based model also has limitations of the small receptive field in early layers. For this reason, when we use a CNN-based model, model architecture should be deeper and heavier to extract useful global features. Thus, traditional methods like RN N -based and CN N -based model needs huge amount of learning parameters. Recently studied result shows that Fast Fourier Convolution (FFC) can overcome the limitations of traditional methods. This operator can extract global features from the first hidden layer, so it can be effectively used for feature extracting of sensor data that have a high sampling rate. In this paper, we propose the algorithm to recognize objects using tactile sensor data and the FFC model. The data was acquired from 11 types of objects to verify our posed model. We collected pressure, current, position data when the gripper grasps the objects by random force. As a result, the accuracy is enhanced from 84.66% to 91.43% when we use the proposed FFC-based model instead of the traditional model.

객체지향 시스템으로부터 컴포넌트를 식별하기 위한 모델 기반의 정량적 재공학 (Model-Based Quantitative Reengineering for Identifying Components from Object-Oriented Systems)

  • 이은주
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.67-82
    • /
    • 2007
  • 객체지향 기술은 단위가 되는 클래스가 지나지게 세밀하고 한정적이어서 재사용의 효용이 떨어진다. 컴포넌트는 객체보다 큰 단위로서 복잡도를 효율적으로 관리해주고 품질과 재사용성을 향상시킨다. 또한 MDA나 SOA와 같은 새로운 프레임워크가 등장하면서 컴포넌트 기술의 중요성은 더 커지게 되었다. 따라서 객체지향 시스템을 분석하여 새로운 환경에 적합한 컴포넌트로 재공학하는 기술이 필요하다. 본 논문에서는 객체지향 시스템으로부터 컴포넌트를 식별하기 위한 모델 기반의 정량적 재공학 방법을 제안한다. 본 방법에서는 이전 연구를 확장하여 시스템모델과 프로세스를 상세히 정의하고 정형화하였다. 객체지향 시스템으로부터 시스템 모델을 구성하고 이 모델을 사용하여 정량적 방법으로 컴포넌트들을 추출하고 정제한다. 또한 지원 도구를 개발하여 현재 존재하는 객체지향 시스템에 적용하여 유효성을 확인한다.

Center point prediction using Gaussian elliptic and size component regression using small solution space for object detection

  • Yuantian Xia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.1976-1995
    • /
    • 2023
  • The anchor-free object detector CenterNet regards the object as a center point and predicts it based on the Gaussian circle region. For each object's center point, CenterNet directly regresses the width and height of the objects and finally gets the boundary range of the objects. However, the critical range of the object's center point can not be accurately limited by using the Gaussian circle region to constrain the prediction region, resulting in many low-quality centers' predicted values. In addition, because of the large difference between the width and height of different objects, directly regressing the width and height will make the model difficult to converge and lose the intrinsic relationship between them, thereby reducing the stability and consistency of accuracy. For these problems, we proposed a center point prediction method based on the Gaussian elliptic region and a size component regression method based on the small solution space. First, we constructed a Gaussian ellipse region that can accurately predict the object's center point. Second, we recode the width and height of the objects, which significantly reduces the regression solution space and improves the convergence speed of the model. Finally, we jointly decode the predicted components, enhancing the internal relationship between the size components and improving the accuracy consistency. Experiments show that when using CenterNet as the improved baseline and Hourglass-104 as the backbone, on the MS COCO dataset, our improved model achieved 44.7%, which is 2.6% higher than the baseline.

객체 검출을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 (Object Size Prediction based on Statistics Adaptive Linear Regression for Object Detection)

  • 권용혜;이종석;심동규
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.184-196
    • /
    • 2021
  • 본 논문은 객체 검출 알고리즘을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 방법을 제안한다. 기존에 제안된 딥 러닝 기반 객체 검출 알고리즘 중 YOLOv2 및 YOLOv3은 객체의 크기를 예측하기 위하여 네트워크의 마지막 계층에 통계치 적응적인 지수 회귀 모델을 사용한다. 하지만, 지수 회귀 모델은 역전파 과정에서 지수 함수의 특성상 매우 큰 미분값을 네트워크의 파라미터로 전파시킬 수 있는 문제점이 있다. 따라서 본 논문에서는 미분 값의 발산 문제를 해결하기 위하여 객체 크기 예측을 위한 통계치 적응적인 선형 회귀 모델을 제안한다. 제안하는 통계치 적응적인 선형 회귀 모델은 딥러닝 네트워크의 마지막 계층에 사용되며, 학습 데이터셋에 존재하는 객체들의 크기에 대한 통계치를 이용하여 객체의 크기를 예측한다. 제안하는 방법의 성능 평가를 위하여 YOLOv3 tiny를 기반으로 제안하는 방법을 적용하여 재설계한 네트워크의 검출 성능과 YOLOv3 tiny의 검출 성능을 비교하였으며, 성능 비교를 위한 데이터셋으로는 UFPR-ALPR 데이터셋을 사용하였다. 실험을 통해 제안하는 방법의 우수성을 검증하였다.

Bag of Visual Words Method based on PLSA and Chi-Square Model for Object Category

  • Zhao, Yongwei;Peng, Tianqiang;Li, Bicheng;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2633-2648
    • /
    • 2015
  • The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.

객체지향기반 과도 안정도 해석 (Transient Stability Analysis Based on OOP)

  • 박지호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents the new method of power system transient stability simulation, which combines the desirable features of both the time domain technique based on OOP(Object-oriented Programming) and the direct method of transient stability analysis using detailed generator model. OOP is an alternative to overcome the problems associated with the development, maintenance and update of large software by electrical utilities. Several papers have already evaluated this approach for power system applications in areas such as load flow, security assessment and graphical interface. This paper applied the object-oriented approach to the problem of power system dynamics simulation. The modeling method is that each block of dynamic system block diagram is implemented as an object and connected each other. In the transient energy method, the detailed synchronous generator model is so-called two-axis model. For the excitation model, IEEE type1 model is used. The developed mothed was successfully applied to New England Test System.

언어-기반 제로-샷 물체 목표 탐색 이동 작업들을 위한 인공지능 기저 모델들의 활용 (Utilizing AI Foundation Models for Language-Driven Zero-Shot Object Navigation Tasks)

  • 최정현;백호준;박찬솔;김인철
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.293-310
    • /
    • 2024
  • In this paper, we propose an agent model for Language-Driven Zero-Shot Object Navigation (L-ZSON) tasks, which takes in a freeform language description of an unseen target object and navigates to find out the target object in an inexperienced environment. In general, an L-ZSON agent should able to visually ground the target object by understanding the freeform language description of it and recognizing the corresponding visual object in camera images. Moreover, the L-ZSON agent should be also able to build a rich spatial context map over the unknown environment and decide efficient exploration actions based on the map until the target object is present in the field of view. To address these challenging issues, we proposes AML (Agent Model for L-ZSON), a novel L-ZSON agent model to make effective use of AI foundation models such as Large Language Model (LLM) and Vision-Language model (VLM). In order to tackle the visual grounding issue of the target object description, our agent model employs GLEE, a VLM pretrained for locating and identifying arbitrary objects in images and videos in the open world scenario. To meet the exploration policy issue, the proposed agent model leverages the commonsense knowledge of LLM to make sequential navigational decisions. By conducting various quantitative and qualitative experiments with RoboTHOR, the 3D simulation platform and PASTURE, the L-ZSON benchmark dataset, we show the superior performance of the proposed agent model.

교양비디오의 시간지원 비디오 모델링 (Temporal Video Modeling of Cultural Video)

  • 강오형;이지현;고성현;김정은;오재철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.439-442
    • /
    • 2004
  • 기존의 비디오 데이터베이스 시스템들은 대부분 간단한 간격을 기반으로 한 관계와 연산을 지원하는 모델을 이용하였다. 비디오 모델에서 시간을 지원하고 객체와 시간의 다양한 연산을 제공하며 효율적인 검색과 브라우징을 지원하는 비디오 데이터 모델이 필요하게 되었다. 비디오 모델은 객체 지향 개념을 기반으로 한 모델로서 비디오의 논리적인 스키마, 객체의 속성과 연산 관계, 그리고 상속과 주석을 이용한 메타데이터 설계를 통하여 비디오 데이터에 대한 전체적인 모델 구조를 제시하였다. 그리고, 점 시간과 시간 간격을 정의하여 시간의 개념을 객체 지향 기반 모델에 부여함으로서 시간 변화에 따른 비디오 정보를 보다 효율적으로 활용할 수 있도록 하였다.

  • PDF