• 제목/요약/키워드: Object-based image matching

검색결과 213건 처리시간 0.024초

칼라 분할 방식을 이용한 비디오 영상에서의 움직이는 물체의 검출과 추적 (Moving Object Tracking Method in Video Data Using Color Segmentation)

  • 이재호;조수현;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.219-222
    • /
    • 2001
  • Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.

  • PDF

그래프 컷을 이용한 강인한 인체 실루엣 추출 (Robust Human Silhouette Extraction Using Graph Cuts)

  • 안정호;김길천;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.52-58
    • /
    • 2007
  • 본 논문에서는 실내 환경에서 동적 스테레오 카메라(active stereo camera)를 이용한 새로운 인체 실루엣 추출 방법을 제안한다. 제안한 알고리즘의 주된 응용분야는 이동 로봇 플랫폼에서의 인체 실루엣을 이용한 제스처 인식이다. 먼 거리에서 움직이는 객체를 분할(segmentation)하는 데에는 저해상도, 그림자, 스테레오 정합의 불확실성, 배경과 객체의 색 분포의 불안정성 등과 같은 다양한 문제를 내포한다. 우리는 먼저 이미지 분할 기법과 스테레오 정보를 이용하여 신뢰도 높은 객체와 배경 영역을 추정하였다. 이렇게 추정된 영역을 적절히 그래프 컷(graph cut)에 활용하는 방식을 고안함으로써 주변 환경의 변화에 강인한 인체 실루엣 추출을 가능하게 하였다. 제안한 방식은 실내에서 펜-틸트(pan-tilt) 스테레오 카메라로 획득된 비디오 데이타를 대상으로 실험하였으며, 색, 색과 스테레오, 색과 대비 정보를 기반으로 한 방법들과 비교 실험한 결과 정확도가 많이 향상된 것을 확인할 수 있었다.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

객체 중심 계층적 계획을 이용한 뇌경색 환자의 시기별 MRI 정량적 분석에 관한 연구 (MRI Quantification Analysis on Fall in Sick Times of the Cerebral Infarction Patients Using Object-Centered Hierarchical Planning)

  • 하광;전계록;김길중
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.61-68
    • /
    • 2003
  • 본 논문에서는 의학적 진단 및 처치 방법의 결정에 중요한 역할을 하는 뇌경색 환자의 각 시기별 특징을 정량화하기 위해 3 가지 MRI 촬영기법을 이용하여 획득한 영상의 특징과 그들의 상관관계들을 객체중심 계층적계획기법을 이용하여 분석하였다. 3 가지 영상의 비교를 위하여 다항워핑 알고리즘과 어파인 변환기법을 수행하여 영상을 정합하였으며, 정합된 영상을 기반으로 뇌경색 시기별 정량화를 수행하였다. 그리고 각 시기별로 색을 설정하여 수 작업으로 얻어진 데이터를 바탕으로 의사 컬러로 나타내었다. 본 연구에서 구한 뇌경색 시기별 정량화 자료를 바탕으로 구분된 결과와 전문의가 판단한 결과를 비교하였다.

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.

테라헤르츠 신호를 이용한 영상의 글자 추출을 위한 화질 개선처리에 대한 연구 (A Study of Image Enhancement Processing for Letter Extraction of Image Using Terahertz Signal)

  • 김성윤;최현근;박인호;김영섭;이용환
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.111-115
    • /
    • 2017
  • Terahertz waves are superior to conventional X-ray or Magnetic Resonance Tomography(MRI), and the amount of information that can be transmitted is as large as thousands of times that conventional X-ray or MRI. In addition, Terahertz waves have great performance in analyzing an object which have some layered structure. By using this advantage, we can extract the letters of a page by analyzing information such as absorption amount and reflection amount by irradiating a closed book with pulses of various frequencies within gap of a terahertz wave. However, in the image of each page using the Terahertz wave might be obtained various kinds of noise and the different character occlusion region. So, to extract letters from the terahertz image, we must take the noise and occlusion region away. We have been working to enhancement the image quality in various ways, and keep on studying de-noising processing for enhancement about the image quality and high resolution. Finally, we also keep on studying about OCR(Optical Character Recognition) technology, which based on pattern matching technique, to read letters.

  • PDF

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

이동 카메라 영상에서 이동물체의 실시간 추적 (Real-time Moving Object Tracking from a Moving Camera)

  • 전춘;이주신
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.465-470
    • /
    • 2002
  • 본 연구에서는 이동 카메라에서 취득한 영상에서 이동물체를 실시간으로 추적하기 위한 모델정합기반 알고리즘을 제안하였다. 제안한 알고리즘은 추적 초기에 화면에서 검출된 이동물체의 윤곽선영상을 모델로 사용하였으며, 추적대상의 형태변화에 적응하기 위하여 Hausdorff 거리를 모델과 영상사이의 유사도로 사용하였다. 또한 새로운 위치탐색 알고리즘 및 처리시간을 단축시키기 위한 방법을 제안함으로써 실시간 추적이 가능하게 하였다. 비디오 카메라로 녹화한 영상을 컴퓨터에서 입력받아 추적실험을 수행하여 기존 방법들과 비교 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.

Hierarchical Graph Based Segmentation and Consensus based Human Tracking Technique

  • Ramachandra, Sunitha Madasi;Jayanna, Haradagere Siddaramaiah;Ramegowda, Ramegowda
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.67-90
    • /
    • 2019
  • Accurate detection, tracking and analysis of human movement using robots and other visual surveillance systems is still a challenge. Efforts are on to make the system robust against constraints such as variation in shape, size, pose and occlusion. Traditional methods of detection used the sliding window approach which involved scanning of various sizes of windows across an image. This paper concentrates on employing a state-of-the-art, hierarchical graph based method for segmentation. It has two stages: part level segmentation for color-consistent segments and object level segmentation for category-consistent regions. The tracking phase is achieved by employing SIFT keypoint descriptor based technique in a combined matching and tracking scheme with validation phase. Localization of human region in each frame is performed by keypoints by casting votes for the center of the human detected region. As it is difficult to avoid incorrect keypoints, a consensus-based framework is used to detect voting behavior. The designed methodology is tested on the video sequences having 3 to 4 persons.

스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정 (Object Detection and 3D Position Estimation based on Stereo Vision)

  • 손행선;이선영;민경원;서성진
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.318-324
    • /
    • 2017
  • 본 항공기에 스테레오 카메라를 장착하여 영상 기반의 비행 객체 탐지 및 탐지된 객체의 3차원 위치를 추정하는 방법을 제시하였다. 구름 사이에 존재할 수 있는 원거리의 작은 객체를 탐지하기 위한 방법으로 PCT 기반의 Saliency Map을 생성하여 이용하였으며, 이렇게 탐지된 객체는 좌우 스테레오 영상에서 매칭을 수행하여 스테레오 시차(Disparity)를 추출하였다. 정확한 Disparity를 추출하기 위하여 비용집적(Cost Aggregation) 영역을 탐지 객체에 맞추어 가변되도록 가변 영역으로 사용하였으며, 본 논문에서는 Saliency Map에서 객체의 존재 영역으로 검출된 결과를 사용하였다. 좀 더 정밀한 Disparity를 추출하기 위하여 Sub-pixel interpolation 기법을 사용하여 Sub-pixel 레벨의 실수형 Disparity를 추출하였다. 또한 이에 카메라 파라미터를 적용하여 실제 탐지된 비행 객체의 3차원 공간 좌표를 생성하여 객체의 공간위치를 추정하는 방법을 제시하였다. 이는 향후 자율비행체의 영상기반 객체 탐지 및 충돌방지 시스템에 활용될 수 있을 것으로 기대된다.