• 제목/요약/키워드: Object-based Classification

검색결과 504건 처리시간 0.024초

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.

BIM 기반 유지관리정보 모델링을 위한 객체분류목록 개발 -건축 전기/정보통신 분야를 중심으로- (Object Classification List for BIM-based Maintenance Information Modeling in Electrical and Telecommunications Field of Architecture)

  • 송종관;조근하;원지선;주기범;배시화
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3183-3191
    • /
    • 2014
  • 시설물의 운영 및 유지관리는 시설물의 전 생애주기 비용의 83% 이상을 차지하기 때문에 시설물의 효과적인 관리는 필수적으로 이루어져야 한다. 본 연구에서는 시설물의 운영 및 유지관리 단계에서 요구되는 정보를 설계 및 시공단계에서부터 관리하기 위해 BIM 객체 기반의 분류목록을 개발하였다. 이 분류목록을 개발하기 위해 건설정보분류체계, 건축전기설비설계기준, 조달청 물품목록분류를 분석하였으며, 객체분류목록을 구성하기 위한 문제점을 도출하였다. 그리고 각 기준을 비교 분석하여 KSF 1540:2010 (CAD도면 작성 원칙과 기준)의 '도면의 분야 코드'를 분야분류인 대분류로 구성하고, 건설정보 분 류체계의 부위분류를 중분류로 구성하였으며, 조달청 물품목록 분류를 소분류인 장비 및 장치분류로 분류하고 해당 코드를 부여하였다. 본 연구는 설계단계 객체관점의 분류를 제공함으로써 운영 및 유지관리단계 정보교환 및 공유에 유용할 것이다. 나아가 운영 및 유지관리단계 기능별, 공간별, 용도별 장치 및 장비관리를 가능하게 함으로써 시설물의 효과적인 운영 및 유지관리를 가능하게 할 것으로 판단된다.

하이퍼스펙트럼 영상을 이용한 가을무와 배추의 분류 (Classification of Radish and Chinese Cabbage in Autumn Using Hyperspectral Image)

  • 박진기;박종화
    • 한국농공학회논문집
    • /
    • 제58권1호
    • /
    • pp.91-97
    • /
    • 2016
  • The objective of this study was to classify between radish and Chinese cabbage in autumn using hyperspectral images. The hyperspectral images were acquired by Compact Airborne Spectrographic Imager (CASI) with 1m spatial resolution and 48 bands covering the visible and near infrared portions of the solar spectrum from 370 to 1044 nm with a bandwidth of 14 nm. An object-based technique is used for classification of radish and Chinese cabbage. It was found that the optimum parameter values for image segmentation were scale 400, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5. As a result, the overall accuracy of classification was 90.7 % and the kappa coefficient was 0.71. The hyperspectral images can be used to classify other crops with higher accuracy than radish and Chines cabbage because of their similar characteristic and growth time.

딥 러닝 회귀 모델 기반의 TSOM 계측 (A Through-focus Scanning Optical Microscopy Dimensional Measurement Method based on a Deep-learning Regression Model)

  • 정준희;조중휘
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.108-113
    • /
    • 2022
  • The deep-learning-based measurement method with the through-focus scanning optical microscopy (TSOM) estimated the size of the object using the classification. However, the measurement performance of the method depends on the number of subdivided classes, and it is practically difficult to prepare data at regular intervals for training each class. We propose an approach to measure the size of an object in the TSOM image using the deep-learning regression model instead of using classification. We attempted our proposed method to estimate the top critical dimension (TCD) of through silicon via (TSV) holes with 2461 TSOM images and the results were compared with the existing method. As a result of our experiment, the average measurement error of our method was within 30 nm (1σ) which is 1/13.5 of the sampling distance of the applied microscope. Measurement errors decreased by 31% compared to the classification result. This result proves that the proposed method is more effective and practical than the classification method.

A COMPARISON OF OBJECTED-ORIENTED AND PIXELBASED CLASSIFICATION METHODS FOR FUEL TYPE MAP USING HYPERION IMAGERY

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.297-300
    • /
    • 2006
  • The knowledge of fuel load and composition is important for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential of reduction the uncertainty in mapping fuels and offers the best approach for improving our abilities. This paper compared the results of object-oriented classification to a pixel-based classification for fuel type map derived from Hyperion hyperspectral data that could be enable to provide this information and allow a differentiation of material due to their typical spectra. Our methodological approach for fuel type map is characterized by the result of the spectral mixture analysis (SMA) that can used to model the spectral variability in multi- or hyperspectral images and to relate the results to the physical abundance of surface constitutes represented by the spectral endmembers. Object-oriented approach was based on segment based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery

  • PDF

Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석 (Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

자동 사료 급이 로봇과 초음파 장애물 분류 시스템 (Autonomous Feeding Robot and its Ultrasonic Obstacle Classification System)

  • 김승기;이용찬;안성수;이연정
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1089-1098
    • /
    • 2018
  • In this paper, we propose an autonomous feeding robot and its obstacle classification system using ultrasonic sensors to secure the driving safety of the robot and efficient feeding operation. The developed feeding robot is verified by operation experiments in a cattle shed. In the proposed classification algorithm, not only the maximum amplitude of the ultrasonic echo signal but also two gradients of the signal and the variation of amplitude are considered as the feature parameters for object classification. The experimental results show the efficiency of the proposed classification method based on the Support Vector Machine, which is able to classify objects or obstacles such as a human, a cow, a fence and a wall.

딥러닝을 이용한 객체 검출 알고리즘 (Popular Object detection algorithms in deep learning)

  • 강동연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.427-430
    • /
    • 2019
  • Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.