본 논문에서는 내용기반 영상 분류를 위한 방법론으로써 신경망을 이용한 방법을 제안한다. 분류 대상 영상은 인터넷상의 다양한 영상들 중에서 전경과 배경의 구분이 있는 객체 영상이다. 전처리 과정에서 영역 분할을 이용하여 영상 내에서 배경을 제거하고 객체 영역을 추출한다. 분류를 위한 특징은 웨이블릿 변환 후 푸출된 형태 특징과 질감특징을 이용한다 추출된 특징 값들을 이용하여 영상들에 대한 학습패턴을 생성하고 신경망 분류기를 구성 한다. 신경망의 학습 알고리즘은 역전파 알고리즘을 사용한다. 가장 효과적인 질감특징을 선 택 하기 위한 실험에서는 대각 모멘트가 가장 높은 분류률을 보여 주었다. 배경을 제거 하고 대각 모멘트를 특징으로 사용하여 실험하였을 때, 30종류에서 각 10개씩 총 300개의 학습 데이터와300개의 테스트 데이터에 대하여 각각 72.3%와 67%의 정분류률을 보였다.
대부분의 영상들은 여러 객체 영역들의 시각적인 특징과 각각의 의미들의 조합으로 구성되어 있다. 그러나 일반적으로 영상 처리를 위한 컴퓨터 시스템들은 영상을 특정 객체 영역의 의미 정보 단위로 해석하지 못하기 때문에 사람이 영상을 인지하는 것과 의미적인 차이(semantic gap)가 발생한다. 본 논문에서는 이러한 문제점을 극복하기 위하여 각 객체 영역 단위에서 추출한 고유한 특징점들을 고차원의 의미 정보로 모델링하여 영상을 분류하는 방법을 제안한다. 제안하는 방법은 객체 단위로 추출된 고유한 특징점들의 의미 정보를 특정 객체 영역을 인식하기 위한 의미 단서로 이용한다. 이를 통하여 기존의 영상 분류 방법들에 비하여 인간의 인지 능력과 유사하고 보다 효율적으로 영상을 분류할 수 있는 장점이 있다. 실험 결과는 다양한 카테고리 종류의 영상에 대하여 제안하는 방법의 효과적인 분류 성능을 보여준다.
This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.
This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.
High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.
In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.
기존의 통계적인 기법과 기계학습 기법 등을 이용한 자동 문서 분류는 주로 문서 벡터만으로 분류기를 학습하여 분류를 행하기 때문에 특정 범주로 문서를 분류하는데 명확치 않은 경우가 빈번히 발생하여 일정 수준 이상의 정확도를 얻는 데에는 한계를 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 기존 문서 분류 알고리즘에 범주 간의 관련성을 반영하여 분류를 시행하는 방법을 제안한다. 이 방법은 간단한 알고리즘에 비해 좋은 성능을 보이고 있는 k-NN 분류 알고리즘을 이용하여 일차적인 문서 분류를 수행한 후 특정 범주로 분류하기가 명확치 않을 경우, 객체 기반 시소러스에서 제공되는 범주들 간의 일반화 관계, 집성화 관계, 연관화 관계 그리고 인스턴스 관계를 이용하여 문서가 할당될 범주를 결정함으로써 자동 문서 분류의 정확도를 향상시킬 수 있다. 본 논문에서 제안된 방법으로 실험한 결과 k-NN 분류 알고리즘의 분류 결과에 비해 재현율은 유지되면서 최고 13.86% 까지 정확률이 향상되었다.
지구온난화와 함께 홍수와 가뭄 등 기후변화에 대비하기 위해서는 경지현황에 대한 신속하고 정확한 정보를 바탕으로 농업생산량을 효율적으로 관리, 예측, 대비하는 것이 필요하다. 본 연구는 시 도 규모 이상의 넓은 지역을 대상으로 농촌지역 토지피복도 제작을 지원할 수 있는 영상분류 알고리즘 개발을 목표로 객체기반 영상분석기법의 활용가능성과 한계를 검토해 보았다. 추가적인 공간자료의 사용이 최소화된 상태에서 다중시기 RapidEye 위성영상의 분광정보 활용가능성을 테스트해 보고자 하였으며, 사례연구지인 김제지역 일대($1,300km^2$)에 대한 토지피복 분류 정확도는 80.3%로 양호하게 나타났다. 분석에 사용된 RapidEye의 6.5m 공간해상도는 대체로 작은 규모로 경작되는 우리나라 경지의 공간적 특성 추출이 가능하다는 것을 보여주었으며, 객체기반의 영상분석 기법은 분석가의 전문지식을 분류과정에서 다양한 방법으로 구현해냄으로써 영상정보 활용의 최적화를 꾀할 수 있음을 보여주었다. 또한, 기개발된 영상분류 알고리즘을 저장하고, 분석목적에 맞게 세부 변수들을 조정하여 다른 지역 또는 다른 영상에 응용할 수 있다는 장점이 있다. 하지만, 객체기반 영상분류의 근간이 되는 영상분할 과정은 정량적으로 명확히 설명되지 않는 경우가 많아 분석자의 경험과 전문지식을 바탕으로 최선의 결과를 도출하는 것이 요구된다.
Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.
In this study, we have developed a calculation system for BIM-based quantities, 4D process, and 5D construction costs, by integrating object shape attributes and the standard classification system which consist of Cost Breakdown System(CBS), Object Breakdown System(OBS) and Work Breakdown System(WBS) in order to use for the 4 dimensional process control of roads and rivers. First, a new BIM library database connected with the BIM library shape objects was built according to the CBS/OBS/WBS standard classification system of the civil engineering field, and a integrated database system of BIM-based quantities, process(4D), and construction costs(5D) for roads and rivers was constructed. Nextly, the process classification system and the cost classification system were automatically disassembled to the BIM objects consisting of the Revit-family style elements. Finally, we added functions for automatically generating four dimensional activities and generating a automatic cost statement according to the combination of WBS and CBS classification system The ultimate goal of this study was to extend the integrated quantities, process(4D), and construction costs(5D) system for new roads and rivers, enabling the integrated use of process(4D) and construction costs(5D) in the design and construction stage, based on the tasks described above.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.