• Title/Summary/Keyword: Object-based

Search Result 8,116, Processing Time 0.039 seconds

Real-Time Object Tracking Algorithm based on Adaptive Color Model in Surveillance Networks (서베일런스 네트워크에서 적응적 색상 모델을 기초로 한 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.183-189
    • /
    • 2015
  • In this paper, we propose an object tracking method using the color information of the image in surveillance network. This method perform a object detection using of adaptive color model. Object contour detection plays an important role in application such as object recognition. Experimental results demonstrate successful object detection over a wide range of object's variation in color and scale. In applications to detect an object in real time, when transmitting a large amount of image data it is possible to find the mode of a color distribution. The specific color of an object is modified at dynamically changing color in image. So, this algorithm detects the tracking area information of object within relevant tracking area and only tracking the movement of that object.Through experiments, we show that proposed method is more robust than other methods under certain ideal situations.

An Implementation of Web-based Client/Server Architecture using Distributed Objects (분산 객체를 이용한 웹기반 클라이언트 / 서버 구조의 구현)

  • 박희창;이태공
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.2
    • /
    • pp.25-44
    • /
    • 1997
  • Internet users been rapidly increased due to the convenient GUI environment. Current Web-based HTTP/CGI client/server architecture has several problems such as the CGI bottleneck, no maintaince of state, and no load balancing. However, with Java and CORBA technologies called“Object Web technology”, we can solve them because Java is not only a mobile code but also a platform-independent code, and CORBA has ability to build distributed object and language-independent object model. The goal of “Object Web technology”is to create multivendor, multiOS, multilanguage“legoware”using objects. This paper implement“Book Search System”which is Web-based client/server architecture using distributed objects. Environments of this implementation are Hangul Windows NT(included IIS) server, Hangul Windows 95 client, Visigenic's VisiBroker for Java 1.2 which is a product of CORBA 2.0, HTTP protocol on TCP-IP-based, Sybase SQL Anywhere 5.0 database server, and the interface between application server and database is JDBC-ODBC bridge middleware.

  • PDF

Contour Model based Non-Rigid Moving Object Tracking using Snake Energy Modification (변형된 스네이크 에너지를 통한 외곽선 모델기반의 비강체 물체 추적)

  • 김자영;이주호;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2104-2107
    • /
    • 2003
  • In this paper, we propose the method Model based Non-Rigid Moving Object Tracking. Motion based method becomes difficult to predict precisely when motion gets larger, so that we can solve such difficultly with regarding the moving object as a model. In the model based method, it should be concerned about setting initial model and updating its model in each frame. We used SNAKE in a way to set the initial model, and also proposed a modified SNAKE to handle the previous SNAKE problems. Moreover, with the elliptical setting, we made the initializing process automatically which is highly subject to change in measuring the performance of SNAKE. We used the Hausdorff distance to identify models in each frame. Through our experiments, our Proposed algorithm does effective work in Non-Rigid Moving Object Tracking.

  • PDF

Vision-Based Haptic Interaction Method for Telemanipulation: Macro and Micro Applications (원격조작을 위한 영상정보 기반의 햅틱인터렉션 방법: 매크로 및 마이크로 시스템 응용)

  • Kim, Jung-Sik;Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1594-1599
    • /
    • 2008
  • Haptic rendering is a process that provides force feedback during interactions between a user and an object. This paper presents a haptic rendering technique for a telemanipulation system of deformable objects using image processing and physically based modeling techniques. The interaction forces between an instrument driven by a haptic device and a deformable object are inferred in real time based on a continuum mechanics model of the object, which consists of a boundary element model and ${\alpha}$ priori knowledge of the object's mechanical properties. Macro- and micro-scale experimental systems, equipped with a telemanipulation system and a commercial haptic display, were developed and tested using silicone (macro-scale) and zebrafish embryos (micro-scale). The experimental results showed the effectiveness of the algorithm in different scales: two experimental systems applied the same algorithm provided haptic feedback regardless of the system scale.

  • PDF

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

Video Image Tracking Technique Based On Shape-Based Matching Algorithm

  • Chen, Min-Hsin;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.882-884
    • /
    • 2003
  • We present an application of digital video images for object tracking. In order to track a fixed object, which was shoot on a moving vehicle, this study develops a shape-based matching algorithm to implement the tracking task. Because the shape-based matching algorithm has scale and rotation invariant characteristics, therefore it can be used to calculate the similarity between two variant shapes. An experiment is performed to track the ship object in the open sea. The result shows that the proposed method can track the object in the video images even the shape change largely.

  • PDF

DeepSDO: Solar event detection using deep-learning-based object detection methods

  • Baek, Ji-Hye;Kim, Sujin;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Jo, Wonkeum;Kim, Dongil
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2021
  • We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.

  • PDF

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Dynamic Behavior Modelling of Augmented Objects with Haptic Interaction (햅틱 상호작용에 의한 증강 객체의 동적 움직임 모델링)

  • Lee, Seonho;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.171-178
    • /
    • 2014
  • This paper presents dynamic modelling of a virtual object in augmented reality environments when external forces are applied to the object in real-time fashion. In order to simulate a natural behavior of the object we employ the theory of Newtonian physics to construct motion equation of the object according to the varying external forces applied to the AR object. In dynamic modelling process, the physical interaction is taken placed between the augmented object and the physical object such as a haptic input device and the external forces are transferred to the object. The intrinsic properties of the augmented object are either rigid or elastically deformable (non-rigid) model. In case of the rigid object, the dynamic motion of the object is simulated when the augmented object is collided with by the haptic stick by considering linear momentum or angular momentum. In the case of the non-rigid object, the physics-based simulation approach is adopted since the elastically deformable models respond in a natural way to the external or internal forces and constraints. Depending on the characteristics of force caused by a user through a haptic interface and model's intrinsic properties, the virtual elastic object in AR is deformed naturally. In the simulation, we exploit standard mass-spring damper differential equation so called Newton's second law of motion to model deformable objects. From the experiments, we can successfully visualize the behavior of a virtual objects in AR based on the theorem of physics when the haptic device interact with the rigid or non-rigid virtual object.

Object tracking algorithm of Swarm Robot System for using SVM and Dodecagon based Q-learning (12각형 기반의 Q-learning과 SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • This paper presents the dodecagon-based Q-leaning and SVM algorithm for object search with multiple robots. We organized an experimental environment with several mobile robots, obstacles, and an object. Then we sent the robots to a hallway, where some obstacles were tying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and SVM to enhance the fusion model with Distance-based action making(DBAM) and Area-based action making(ABAM) process.