• 제목/요약/키워드: Object vehicle tracking

검색결과 128건 처리시간 0.029초

카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발 (Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment)

  • 김유진;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

F-SORT 기반 고속도로 추월차로 지속 주행 무인 단속 시스템 설계 (Design of Continuous Driving Enforcement System for FSORT-based Highway Passing Lane)

  • 백남열;김기태;장종욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.189-193
    • /
    • 2024
  • 한국 도로교통법에 따르면 고속도로 추월차선(1차선)에서 지속 주행 시, 지정차로위반으로 판단한다. 현재 고속도로에서 앞선 상황을 단속하기 위해서는 시민의 신고나, 도로 경찰이 직접 위반 여부를 판단하여 단속하고 있다. 이는, 고속도로에서 차량의 속도가 아닌 추월 여부에 따라 위반이 판단되고, CCTV에서는 차량이 지속해서 주행하고 있는지 기준이 모호하여 판단이 힘들기 때문이다. 따라서, 사람의 개입 없이 시스템이 1차선 지속 주행 여부를 스스로 판단하고 단속하는 시스템이 필요하다. 본 논문에서는 객체 추적 중에서 다중 객체 추적(Multiple Object Tracking)이 가능하고 시스템의 실시간성을 보장하기 위해 SORT(Simple Online and Realtime Tracking) 모델을 기반한 F-SORT(Focus Simple Online and Realtime Tracking)를 기반하여 차량을 실시간으로 추적하고 차량의 이동 거리를 판단하여 1차선 지속 주행 여부를 시스템이 판단하여 단속하는 무인 단속 시스템을 설계하였다.

Vehicle Classification and Tracking Based on Deep Learning

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of Web Engineering
    • /
    • 제21권4호
    • /
    • pp.1283-1294
    • /
    • 2022
  • Traffic volume is gradually increasing due to the development of technology and the concentration of people in cities. As the results, traffic congestion and traffic accidents are becoming social problems. Detecting and tracking a vehicle based on computer vision is a great helpful in providing important information such as identifying road traffic conditions and crime situations. However, vehicle detection and tracking using a camera is affected by environmental factors in which the camera is installed. In this paper, we thus propose a deep learning based on vehicle classification and tracking scheme to classify and track vehicles in a complex and diverse environment. Using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

Object Tracking for a Video Sequence from a Moving Vehicle: A Multi-modal Approach

  • Hwang, Tae-Hyun;Cho, Seong-Ick;Park, Jong-Hyun;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • 제28권3호
    • /
    • pp.367-370
    • /
    • 2006
  • This letter presents a multi-modal approach to tracking geographic objects such as buildings and road signs in a video sequence recorded from a moving vehicle. In the proposed approach, photogrammetric techniques are successfully combined with conventional tracking methods. More specifically, photogrammetry combined with positioning technologies is used to obtain 3-D coordinates of chosen geographic objects, providing a search area for conventional feature trackers. In addition, we present an adaptive window decision scheme based on the distance between chosen objects and a moving vehicle. Experimental results are provided to show the robustness of the proposed approach.

  • PDF

다중주기 칼만 필터를 이용한 비동기 센서 융합 (Asynchronous Sensor Fusion using Multi-rate Kalman Filter)

  • 손영섭;김원희;이승희;정정주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

지하 주차장 차량 추적을 위한 객체의 이동 방향 추정 (Estimation of Moving Direction of Objects for Vehicle Tracking in Underground Parking Lot)

  • ;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.305-311
    • /
    • 2021
  • One of the highly reliable object tracking methods is to trace objects by associating objects detected by deep learning. The detected object is represented by a rectangular box. The box has information such as location and size. Since the tracker has motion information of the object in addition to the location and size, knowing additional information about the motion of the detected box can increase the reliability of object tracking. In this paper, we present a new method of reliably estimating the moving direction of the detected object in underground parking lot. First, the frame difference image is binarized for detecting motion energy, change due to the object motion. Then, a cumulative binary image is generated that shows how the motion energy changes over time. Next, the moving direction of the detected box is estimated from the accumulated image. We use a new cost function to accurately estimate the direction of movement of the detected box. The proposed method proves its performance through comparative experiments of the existing methods.

환경변화에 강인한 다중 객체 탐지 및 추적 시스템 (Multiple Object Detection and Tracking System robust to various Environment)

  • 이우주;이배호
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.88-94
    • /
    • 2009
  • 본 논문에서는 보안 및 감시 시스템 분야에 적용할 수 있는 실시간 객체 탐지 및 추적 알고리듬을 제안한다. 구현된 시스템은 객체 탐지 단계, 객체 추적 단계로 구성되었다. 객체탐지에서는 정화한 객체의 움직임 검출을 위한 향상된 검출 방법인 적응배경 차분법과 적응적 블록 기반 모델을 제안한다. 객체추적에서는 칼만 필터에 기반한 다중 물체 추적 시스템을 설계하였다. 실험결과 이동객체의 움직임을 추정할 수 있었고, 추적 과정에서도 다수의 객체를 잃어버리지 않고 정상적으로 추적할 수 있었다. 또한 원거리 탐지 및 추적에서 향상된 결과를 얻을 수 있었다.

파티클 필터를 장착한 가중된 다중 인스턴스학습을 이용한 전방차량 추적 (Forward Vehicle Tracking Based on Weighted Multiple Instance Learning Equipped with Particle Filter)

  • 박근호;이준환
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.377-385
    • /
    • 2015
  • 본 논문에서는 파티클 필터를 장착하고 WMIL(Weighted Multiple Instance Learning)을 이용한 전방차량 추적 알고리즘을 제안하였다. 제안된 알고리즘에서 영상표현은 Haar-like 특징들을 사용하고 차량인식 결과는 추적하고자 하는 전방차량의 위치를 알아내는데 사용된다. 제안된 방식에서 WMIL과 파티클 필터를 결합하기 위해 기존의 외관모델을 이용한 추적에서 탐색영역에서 영상조각의 추적객체 신뢰도 맵을 계산하는 대신에 파티클 필터의 전파, 관측, 추정, 선택 그리고 분류기 훈련 등의 단계를 매 프래임 마다 순차적으로 수행하여 객체의 새로운 위치를 갱신하였다. 제안된 전방차량 추적방식은 실험을 통해 Ada-boost, MIL(Multiple Instance Learning)이나 WMIL 방법을 이용하는 추적에 비해 파티클 필터로 인해 계산량 증가는 불가피하나 추적의 질적인 정확도는 국도, 고속도로, 터널 및 시내도로 등의 실험 동영상에서 추적대상의 위치오차가 평균 4.5화소 정도로 기존의 추적방법들에 비해 크게 개선되는 것을 확인하였다.

저고도 무인항공기를 이용한 보행자 추적에 관한 연구 (A Study on Pedestrians Tracking using Low Altitude UAV)

  • 서창진
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법 (A vehicle detection and tracking algorithm for supervision of illegal parking)

  • 김승균;김효각;장동니;박상희;고성제
    • 전기전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.232-240
    • /
    • 2009
  • 본 논문은 불법 주정차 단속을 위한 정지 차량 검지 및 추적 기법을 제안한다. 제안하는 알고리즘은 크게 네 부분으로 구성되어 있다. 먼저, 입력 영상으로부터 움직이는 차량을 구분하기 위하여 향상된 코드북 물체 검지 알고리즘을 이용한 차량 검지 알고리즘을 제안한다. 두 번째로 차량의 기하학적 특징을 이용하여 차량이 아닌 물체는 제외시키는 전처리 기법을 사용한다. 그런 다음, 검지된 결과 차량들을 히스토그램 추적 기법과 칼만 필터를 결합한 추적 알고리즘을 이용하여 추적한다. 추적 결과를 더 정확하게 하기 위하여, 히스토그램 추적 결과를 칼만 필터의 측정 데이터로 사용한다. 마지막으로, 정지 차량 검지 알고리즘의 신뢰성 있고 정확한 성능을 위하여 실제 정지 카운터 (RSC)를 제안한다. 실험결과로부터 제안한 시스템은 복잡한 실제 도로 환경에서도 여러 차량을 동시에 추적할 수 있고, 정지 차량을 성공적으로 검지해냄을 확인한다.

  • PDF