• Title/Summary/Keyword: Object precision method

Search Result 366, Processing Time 0.023 seconds

A Study on the Comparison of 2-D Circular Object Tracking Algorithm Using Vision System (비젼 시스템을 이용한 2-D 원형 물체 추적 알고리즘의 비교에 관한 연구)

  • Han, Kyu-Bum;Kim, Jung-Hoon;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, the algorithms which can track the two dimensional moving circular object using simple vision system are described. In order to track the moving object, the process of finding the object feature points - such as centroid of the object, corner points, area - is indispensable. With the assumption of two-dimensional circular moving object, the centroid of the circular object is computed from three points on the object circumference. Different kinds of algorithms for computing three edge points - simple x directional detection method, stick method. T-shape method are suggested. Through the computer simulation and experiments, three algorithms are compared from the viewpoint of detection accuracy and computational time efficiency.

  • PDF

Development of a Multibody Dynamics Program Using the Object-Oriented Modeling

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • A multibody system dynamics analysis program is presented using one of the most useful programming methodologies, the object-oriented modeling, The object-oriented modeling defines a problem from the physical world as an abstract object. The object becomes encapsulated with the data and method, Analysis is performed using the object's interface, It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program, The method presented in this paper has several advantages, Since the mechanical components of the multi-body system are converted into the class, the modification, exchange, distribution and reuse of classes are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems, Information can be communicated to each object through messaging. This makes the modeling of new classes easier using the inheritance, When developing a S/W for the computer simulation of a physical system, it is reasonable to use object-oriented modeling.

RCS Analysis of Complex Structures Using Object Precision Method (Object Precision 방법을 이용한 복합 구조물의 RCS 해석)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.159-164
    • /
    • 2005
  • Monostatic RCS analysis of complex structures has been done with a combined method of physical and geometric optics, commonly applied to high frequency electromagnetic backscattering problems. In the analysis, the complex structure is modeled as a number of flat surfaces and the RCS of whole structure is calculated by summing RCS of each surface, which can be obtained from an analytical solution of flat surface phase integral derived from physical optics. The reflected and hidden surfaces are searched by an object precision method based on adaptive triangular beam method, which can take account for effects of multiple reflections and polarizations of electromagnetic wave. The validity of the presented RCS analysis method has been verified by comparing with exact solutions and measured data for various structures.

A Study on the Measurement of the 3-D Object Shapes by Using Optical Ring Method (광링식 3차원 형상 측정법에 관한 연구)

  • Kang, Young-June;Park, Jeong-Hwan;Kim, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.38-45
    • /
    • 1996
  • The optical triangulation method has been used as a non-contact measuring method of three dimensional object whape. But this measuring method has narrow measuring range, non-linearity on steep slope surface and shadow effect. In this study, we discussed a new optical measurement method to overcome these kinds of demerits. The advantage of this new method is that it is possible to measure precisely the object shape having the steep slope surface without shadow effect. As exper- imental results, maximum displacement error was 200 .mu. m over the whole measuring when the incident angle on the object surface was within 60 degree.

  • PDF

Object Tracking Method Based on Local Moments

  • Takamatsu, R.;Kawarada, H.;Sato, M.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper proposes a object tracking method based on the local moments, or moment based on the local moments, or moment of some restricted area, in which the idea of the viewpoint and the visual filed corresponding to the local area of an image is introduced. Using local moment with the optimally controlled viewpoint and visual field, the target position and its breadth are estimated robustly. By two experiments, the validity of the proposed method is shown.

  • PDF

Study of 3-dimensional measurement of object shape by optical ring method (광링식 3차원 형상 측정법에 관한 연구)

  • 박정환;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.408-413
    • /
    • 1995
  • Nowadays, manufacturing system is trending toward integrated circumstance by helping of CAD/CAM/CAT. To use this system effectively, it is necessary to get exact 3 dimensional surface data of an object. We have been using contact method to measure 3 dimensional object profile. But his method has demerit of leaving scrach or small distortion on the object. To improve this, a non-contact measuring method using optical system is adopted. In this paper, We propose optical ring method. Withthis system, We could measure displacement of the object in the range of 45mm having 150mm having 150 .mu. m resolution with no scratch or distortion.

  • PDF

카메라 디포커싱을 이용한 로보트의 시각 서보

  • 신진우;고국현;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.559-564
    • /
    • 1994
  • Recently, a visual servoing for an eye-in-hand robot has become an interesting problem. A distance between a camera and a task object is very useful information for visual servoing. In the previous works for visual servoing, the distance can be obtained from the difference between a reference and a measured feature value of the object such as area on image plane. However, since this feature depends on the object, the reference feature value must be changed when other task object is taken. To overcome this difficulty, this paper presents a novel method for visual servoing. In the proposed method, a blur is used to obtain the distance. The blur, one of the most important features, depends on the focal length of camera. Since it is not affected by the change of object, the reference feature value is not changed although other task object is taken. In this paper, we show a relationship between the distance and the blur, and define the feature jacobian matrix based on camera defocusing to operate the robot. A series of experiments is performed to verify the proposed method.

  • PDF

Object of Interest Extraction Using Gabor Filters (가버 필터에 기반한 관심 객체 검출)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, an extraction method of objects of interest in the color images is proposed. It is possible to extract objects of interest from a complex background without any prior-knowledge based on the proposed method. For object extraction, Gator images that contain information of object location, are created by using Gator filter. Based on the images the initial location of attention windows is determined, from which image features are selected to extract objects. To extract object, I modify the previous method partially and apply the modified method. To evaluate the performance of propsed method, precision, recall and F-measure are calculated between the extraction results from propsed method and manually extracted results. I verify the performance of the proposed methods based on these accuracies. Also through comparison of the results with the existing method, I verily the superiority of the proposed method over the existing method.

  • PDF

Unoccluded Cylindrical Object Pose Measurement Using Least Square Method (최소자승법을 이용한 가려지지 않은 원통형 물체의 자세측정)

  • 주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.167-174
    • /
    • 1998
  • This paper presents an unoccluded cylindrical object pose measurement using a slit beam laser in which a robot recognizes all of the unoccluded objects from the top of jumbled objects, and picks them up one by one. The elliptical equation parameters of a projected curve edge on a slice are calculated using LSM. The coefficients of standard elliptical equation are compared with these parameters to estimate the object pose. The hamming distances between the estimated coordinates and the calculated ones are extracted as measures to evaluate a local constraint and a smoothing surface curvature. The edges between slices are linked using error function based on the edge types and the hamming distances. The linked edges on slices are compared with the model object's length to recognize the unoccluded object. This proposed method may provide a solution to the automation of part handling in manufacturing environments such as punch press operation or part assembly.

  • PDF

A Study on Reducing Errors in Scanning Object and Registration using a Laser Scanner (레이저 스캐너를 이용한 측정 및 레지스트레이션시 오차감소에 관한 연구)

  • 홍성균;김연술;이희관;김형찬;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.197-204
    • /
    • 2003
  • This study proposes a method to reduce errors in scanning object and registration using a laser scanner. The method consists of 3 stages. First, there is an error induced by the difference of the distance between the probe and the object. It is possible to reduce the error by planning a scanning strategy: object setting, scan path. Second, the scan data of the tooling ball affects calculating the tooling ball center. A z-direction compensation is given to calculate more accurate registration points. Third, three points are used to determine a coordinate transformation on each frame. The maximum error usually lies on the third tooling ball in the conventional merging method. LSM (Least Square Method) is applied to a coordinate transformation to reduce the registration error.