• 제목/요약/키워드: Object feature vector

검색결과 131건 처리시간 0.02초

특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구 (A partially occluded object recognition technique using a probabilistic analysis in the feature space)

  • 박보건;이경무;이상욱;이진학
    • 한국통신학회논문지
    • /
    • 제26권11A호
    • /
    • pp.1946-1956
    • /
    • 2001
  • 본 논문에서는 관계 벡터 공간상의 특징 대응에 관한 확률적 해석에 기반한 새로운 부분 인식 기법을 제안한다. 효과적인 인식을 위해 물체를 관계 속성 그래프(Attributed Relational Graph; ARG)와 관계 벡터 공간들의 집합으로 표현한다. 또한 잡음이나 특징 소실로 인한 왜곡을 관계 벡터 공간에서의 관계 벡터 분포에 대한 왜곡으로 확률적으로 모델링한다. 제안하는 부분 인식 기법은 두 단계로 이루어진다. 우선 지역적인 특징(local feature)과 구조적인 일관성(structural consistency)을 사용하여 후보집합을 추출한다. 이렇게 추출된 후보집합 각각에 대해 관계 벡터 공간상에서의 에러 분석과 반복적인 voting 알고리즘을 통해 특징 소실을 검출한다. 실제 영상에 대한 실험 결과를 통해 제안한 알고리즘이 잡음이나 가리어짐이 심한 경우에도 강건한 성능을 보임을 알 수 있으며, 릴렉세이션(relaxation) 기법과 수행 시간 비교 분석을 통해 계산량 측면에서의 성능 향상을 확인할 수 있다.

  • PDF

Calibration 모형을 이용한 판별분석 (Discriminant analysis based on a calibration model)

  • 이석훈;박래현;복혜영
    • 응용통계연구
    • /
    • 제10권2호
    • /
    • pp.261-274
    • /
    • 1997
  • 기존에 제안되어온 판별분석 기법이 대상으로 하는 대부분의 자료는 각 개체가 어느 한 특정한 집단에 전적으로 소속되어 있는 것으로 국한되어 왔다. 그러나 오늘날 (0-1)의 이치논리가 퍼지(Fuzzy) 개념과 다치논리로 확장되는 현상은 어느 한 개체를 꼭 한개의 집단에만 국한시키는 관점 역시 변화를 요구하고 있다고 본다. 이에 본 논문에서는 한 개체가 어떤 소속확률을 갖고 여러개의 집단에 소속되어 있는 상황을 고려하여 이러한 개체들로 구성된 학습표본으로부터 판별분석 규칙을 개발하는 것을 목표로 하였다. 방법론으로는 개체들의 특성벡터와 소속상태의 관계를 역추정(calibration) 모형으로 표현하고 판별대상개체의 특성벡터가 주어졌을 때 소속상태를 추정하도록 하며 이때 추정은 베이지안 방법, Metropolis 알고리즘 등을 사용하였다. 또한 제안된 판별규칙의 평가를 위한 기준을 제안하고 두개의 자료를 기존의 다른 규칙들과 함께 분석하여 결과를 비교하였다.

  • PDF

Histogram Of Gradients (HOG) 피쳐와 Support Vector Machine (SVM) 분류기를 이용한 위성영상에서 관심물체 탐색 방법 (Detection method of objects with a special pattern in satellite images using Histogram Of Gradients (HOG) feature and Support Vector Machine (SVM) classifier)

  • 임인근;김수환;최종국
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.537-546
    • /
    • 2014
  • 본 논문은 비 접근 지역에 존재하는 관심물체의 위치를 고해상도 광학 위성영상을 이용하여 찾아내기 위한 방법을 제안한다. 관심물체는 정확하게 규정된 크기와 모양을 갖는 것이 아니라, 개념적으로 유사한 패턴을 가진 물체들의 집합이다. 본 논문에서는 유사 객체 검색에서 Histogram of Gradients (HOG) feature를 이용하여 입력 영상의 관심물체의 특징을 추출하고, 추출된 특징 데이터를 이용하여 다른 영상들의 관심물체를 탐색하는 Support Vector Machine (SVM) 학습 및 분류기를 개발하였다. 제안한 방법은 관심물체를 자동으로 찾아줌으로써, 넓은 영역에서 수동으로 관심물체를 탐색하는데 소요되는 시간과 노력을 줄일 수 있는 효과가 있음을 확인하였다.

로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델 (Small Marker Detection with Attention Model in Robotic Applications)

  • 김민재;문형필
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.

드 브루인 수열을 이용한 효과적인 위치 인식 마커 구성 (Effective Marker Placement Method By De Bruijn Sequence for Corresponding Points Matching)

  • 박경미;김성환;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제12권6호
    • /
    • pp.9-20
    • /
    • 2012
  • 컴퓨터비전에서 안정적으로 대응점을 획득하는 것은 매우 중요한 일이다. 그러나 이들은 스케일, 조명, 시점 등이 변하는 환경에서 정확한 대응점을 찾는 과정은 쉽지 않다. SIFT 알고리즘은 객체의 모서리나 꼭지점으로부터 추출한 특징벡터를 사용하므로 스케일링, 회전, 조명변화를 가지는 영상에서도 뛰어난 매칭을 수행한다. 그러나 SIFT는 엣지에 의해 특징점을 추출하므로 엣지가 존재하지 않는 영역에서는 원하는 대응점을 찾을 수 없다. 본 연구는 SIFT에 의한 대응 특징점 추출과 매칭 성능을 향상시키기 위한 마커 모양 및 배치 방법을 제안한다. 제안 방법에서 사용한 마커의 모양은 부착 방향에 따라 SIFT 알고리즘에 의해 한 방향으로 우세한 벡터를 검출할 수 있는 반원형(SemiCircle)으로 구성한다. 그리고 대응점 매칭의 성능을 향상시키기 위하여 마커의 방향 배치는 드 브루인 수열(De Bruijn Sequence)을 이용한다. 실험을 통해 제안한 방법이 기존의 방법보다 더 정확한 특징점 검출과 매칭에 효과적임을 증명하였다.

영상특징을 이용한 로봇의 시각적 구동 방법 (Visual Servoing of an Eye-In-Hand Robot Based on Features)

  • 장원;정명진;변증남
    • 대한전자공학회논문지
    • /
    • 제27권11호
    • /
    • pp.32-41
    • /
    • 1990
  • 본 논문에서는 시각정보에 의하여 로봇을 제어하기위해 영상으로부터 추출되는 feature를 이용하는 한 방법을 제안한다. 특별히 feature에 대한 수학적인 정의를 제안하였으며 로봇의 움직임과 feature vector의 미소한 변화 사이의 관계를 기술하였다. 이 과정에서 feature jacobian matrix와 그의 gene-ralized inverse가 사용되었다. 로봇 자유도의 수보다 많은 feature를 사용하면 visual servoing의 성능을 향상시킬 수 있었다. 여러 예를 통하여, 본 논문에서 제안된 방법이 유효함을 보였다.

  • PDF

네트워크 카메라를 이용한 물체 감시와 비정상행위 판단 (Object Surveillance and Unusual-behavior Judgment using Network Camera)

  • 김진규;주영훈
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.125-129
    • /
    • 2012
  • In this paper, we propose an intelligent method to surveil moving objects and to judge an unusual-behavior by using network cameras. To surveil moving objects, the Scale Invariant Feature Transform (SIFT) algorithm is used to characterize the feature information of objects. To judge unusual-behaviors, the virtual human skeleton is used to extract the feature points of a human in input images. In this procedure, the Principal Component Analysis (PCA) improves the accuracy of the feature vector and the fuzzy classifier provides the judgement principle of unusual-behaviors. Finally, the experiment results show the effectiveness and the feasibility of the proposed method.

동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리 (Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment)

  • 정상준;송재복;강신천
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF

웨이브렛 변환을 이용한 내용기반 검색 시스템 (Content-based retrieval system using wavelet transform)

  • 반가운;유기형;박정호;최재호;곽훈성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.733-736
    • /
    • 1998
  • In this paper, we propose a new method for content-based retrieval system using wavelet transform and correlation, which has were used in signal processing and image compressing. The matching method is used not perfect matching but similar matching. Used feature vector is the lowest frequency(LL) itself, energy value, and edge information of 4-layer, after computng a 4-layer 2-D fast wavelet transform on image. By the proosed algorithm, we got the result that was faste rand more accurate than the traditional algorithm. Because used feature vector was compressed 256:1 over original image, retrieval speed was highly improved. By using correlation, moving object with size variation was reterieved without additional feature information.

  • PDF

For the Association between 3D VAR Model and 2D Features

  • Kiuchi, Yasuhiko;Tanaka, Masaru;Fujiki, Jun;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1404-1407
    • /
    • 2002
  • Although we look at objects as 2D images through our eyes, we can reconstruct the shape and/or depth of objects. In order to realize this ability using computers, it is required that the method which can estimate the 3D features of object from 2D images. As feature which represents 3D shapes effectively, three dimensional vector autoregressive model is pro- posed. If this feature is associated other feature of 2D shape, then above aim might be achieved. On the other hand, as feature which represents 2D shapes, quasi moment features is proposed. As the first step of association of these features, we constructed real time simulator that computes both of two features concurrently from object data (3D curves) . This simulator can also rotate object and estimate the rotation The method using 3D VAR model estimates the rotation correctly, but the estimation by quasi moment features includes much errors. This reason would be that projected images are constructed by the points only, and doesn't have enough sizes to estimate the correct 3D rotation parameters.

  • PDF