• 제목/요약/키워드: Object feature vector

검색결과 131건 처리시간 0.031초

관련성 피드백을 이용한 효과적인 내용기반 영상검색 (Effective Content-Based Image Retrieval Using Relevance feedback)

  • 손재곤;김남철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.669-672
    • /
    • 2001
  • We propose an efficient algorithm for an interactive content-based image retrieval using relevance feedback. In the proposed algorithm, a new query feature vector first is yielded from the average feature vector of the relevant images that is fed back from the result images of the previous retrieval. Each component weight of a feature vector is computed from an inverse of standard deviation for each component of the relevant images. The updated feature vector of the query and the component weights are used in the iterative retrieval process. In addition, the irrelevant images are excluded from object images in the next iteration to obtain additional performance improvement. In order to evaluate the retrieval performance of the proposed method, we experiment for three image databases, that is, Corel, Vistex, and Ultra databases. We have chosen wavelet moments, BDIP and BVLC, and MFS as features representing the visual content of an image. The experimental results show that the proposed method yields large precision improvement.

  • PDF

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

회전불변 객체 인식에 관한 연구 (On the Study of Rotation Invariant Object Recognition)

  • 엠디자한기르 앨롬;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.405-408
    • /
    • 2010
  • This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권6호
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

Object Feature Extraction Using Double Rearrangement of the Corner Region

  • Lee, Ji-Min;An, Young-Eun
    • 통합자연과학논문집
    • /
    • 제12권4호
    • /
    • pp.122-126
    • /
    • 2019
  • In this paper, we propose a simple and efficient retrieval technique using the feature value of the corner region, which is one of the shape information attributes of images. The proposed algorithm extracts the edges and corner points of the image and rearranges the feature values of the corner regions doubly, and then measures the similarity with the image in the database using the correlation of these feature values as the feature vector. The proposed algorithm is confirmed to be more robust to rotation and size change than the conventional image retrieval method using the corner point.

Particle filter를 이용한 이동 물체 추적 알고리즘 (Mobile Object Tracking Algorithm Using Particle Filter)

  • 김세진;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.586-591
    • /
    • 2009
  • 본 논문에서는 Particle filter를 이용한 특징 벡터 기반 이동 물체 추적 알고리즘을 제안한다. 이를 위해, 첫 번째, RGB 칼라 모델을 이용하여 초기 이동 물체의 움직임 영역(blob)을 추출하고, KLT-알고리즘을 이용하여 입력 영상에 대한 특징 벡터를 구한다. 그 다음, 초기 추출된 이동 물체의 움직임 영역에 이 특징 벡터를 매칭시켜 1차 특징 벡터를 구한다. 두 번째로, RGB와 HSI 칼라모델을 이용하여 이동 물체의 움직임 영역을 추출하고, 앞서 구한 1차 특징 벡터에 Snake 알고리즘을 적용함으로써 새로운 특징 벡터를 구한다. 그 다음, 기 추출된 이동 물체의 움직임 영역에 이 새롭게 구한 특징 벡터를 매칭시켜 2차 특징 벡터를 구한다. 최종적으로, 2차 특징 벡터에 Particle filter를 적용함으로써 본 논문에서 제안한 이동물체를 추적하는 알고리즘을 완성한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

Aspect feature extraction of an object using NMF

  • JOGUCHI, Hirofumi;TANAKA, Masaru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1236-1239
    • /
    • 2002
  • When we see an object, we usually can say what it is easily even for the case where the object isn't shown in the frontal view. However, it is difficult to believe that all views of every object we have ever seen are fully memorized in our brain. Possibly, when an object is shown, we have some typical views of the object in our brain through our past experience and reconstruct the view to recognize what the presented object is. Non-negative Matrix Factorization (NMF) is one of the methods to extract the basis images from sample data set. The prominent feature of this method is that the reconstructed image is obtained by only additions of the basis images with suitable positive weights. So NMF can be seen more biologically plausible method than any other feature extraction methods such as Vector Quantization (VQ) and principal Component Analysis (PCA). In this paper, we adopt NMF to extract the aspect features from the set of images, which consists of various views of a given object. Some experiments are shown how much well NMF can extract the aspect features than any other methods such as VQ and PCA.

  • PDF

머신비젼을 이용한 물체 분류 및 검사시스템 구현 (A Study on Implementation of the Object Classification and Inspection System Using Machine Vision)

  • 전춘기;이원호이탁우영환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.951-954
    • /
    • 1998
  • This paper describes the implementation of the machine vision system and the method of classifying the objects. Its system described in this paper is consisted of robot, conveyer system, warehouse, and machine vision. This system first recognizes the object on conveyer, and then robot moves it to the warehouse. The position of the object on conveyer is always not constant, because it is not easy to extract the feature of its object and classify it into one of several categories. In this paper, to classify or inspect the pattern of the object, we propose the method of template matching using feature vector such as position invariant moment and mophological operation such as opening and closing. And we indentified an unregistered object using unsuperviser learning method and assigned it to the new pattern. We implemented its system and obtained satisfied results.

  • PDF

퍼지 원 클래스 서포트 벡터 머신 (Fuzzy One Class Support Vector Machine)

  • 김기주;최영식
    • 인터넷정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.159-170
    • /
    • 2005
  • OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.

  • PDF

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.