• 제목/요약/키워드: Object feature vector

검색결과 131건 처리시간 0.018초

부분 외곽선 정보를 이용한 이동물체의 추척 알고리즘 (A Study on Tracking Algorithm for Moving Object Using Partial Boundary Line Information)

  • 조영석;이주신
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.539-548
    • /
    • 2001
  • 본 연구에서는 배경과 구분되는 이동물체를 추적하기 위한 방법으로 부분 외곽선 정보를 이용한 이동물체 추적 알고리즘을 제안하였다. 이동물체의 추적은 이동물체의 외곽선을 검출한 다음 외곽선 정보를 이동물체의 특징으로 정하여 추적하는 알고리즘을 사용하였다. 먼저 이동물체 외곽선 정보를 이용하여 연속한 동영상 입력에 대하여 속 BMA(Block Matching Algorithm)을 이용하여 움직임 벡터를 추출하고 움직임 벡테를 기초로 이동물체를 추출한다. 다음은 이동물체 초기 특징 벡테 생성단계로서 이동물체에 대한 외곽선을 추출한다. 이동물체의 외곽선 영역 중 상하좌우의 외곽선 일부분을 특징벡터로 정한다. 다음은 추적단계로 이전 프레임에서 얻은 특징벡터를 이용하여 현재 프레임에서 이동물체의 추적을 수행하였다. 제안된 알고리즘에 대하여 실제영상을 가지고 이동물체추적 모의 실험을 수행한 결과 기존 능동 윤곽선 추적알고리즘은 물체 외곽선 전체를 추적하기 때문에 물체의 외곽선 길이에 따라 처리시간이 변화하지만 제안된 알고리즘은 이동물체의 외곽선 영역을 특징정보로 하여 추적하기 때문에 추적연산이 간단하였다. 제안된 이동물체 추적알고리즘 중 이동벡터를 추출하는 BMA 연산은 기존 알고리즘 보다 연산량이 약 39%감소였으며, 상하 좌우 외곽선 정보를 이용하여 이동물체를 추적한 결과 추적오차는 특징벡터의 크기가 [$10{\times}5$]일 때 검색오차가 2화소 이하로 양호하게 나타났다. 또한 기본 능동 윤ㅅ곽선 축적알고리즘은 물체 외곽선 크기에 따른 처리시간이 변화하지만 제안된 알고리즘은 특징벡터의 크기가 일정하기 때문에 동일한 처리시간이 필요하였다.

  • PDF

Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 (Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform)

  • 이준복;김문화;장동식
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.21-26
    • /
    • 2003
  • 본 논문은 퓨리에 변환을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 기법을 제시한다. 특징 벡터는 3차원극좌표계를 이용하여 폐곡면 객체의 회전각도별 내측거리값을 퓨리에 변환을 통해 주파수 영역으로 변환하여 추출한다. 특징 벡터는 폐곡면 표면점과 중심점과의 관계를 나타내는 내측거리값을 활용하므로 위치 이동에 불변이고 내측거리값은 퓨리에 변환 전 정규화되기 때문에 크기 변화에 불변이며 퓨리에 변환 후 파워 스펙트럼을 적용하여 회전 변화 불변임을 보여주고 있다. 실험 결과 위치 이동, 크기 변화, 회전 변화에 불변임을 알 수 있고 서로 상이한 객체간에 변별력이 있어 객체 고유의 특징 벡터로써 활용이 가능함을 제시한다.

  • PDF

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

객체 특징 벡터를 이용한 3D 게임 캐릭터 그룹핑에 관한 연구 (A Study on 3D Game Character Grouping using Object Feature Vector)

  • 박창민
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.263-269
    • /
    • 2012
  • 캐릭터의 그룹핑은 3D 게임에서 매우 효과적으로 게임을 즐길 수 있게 한다. 본 논문에서는 객체 특징 벡터를 이용하여 3D 게임 캐릭터를 속성에 따라 그룹핑하는 방법을 제시한다. 게임에서 움직임이 거의 없는 캐릭터(NMT)의 경우 외부가 직선에 의한 단순한 형태로 나타난다. 그러나 움직임이 많은 캐릭터(MT)는 그것과 구분된다. 이러한 특징을 가버 필터를 이용하여 추출하고 K-NN으로 그룹핑한다. 실험을 통하여 각 속성을 사용해서 그룹핑한 경우 80%를 상회하는 정확도를 얻었다. 제안한 방법은 게임 진행에서 유사한 속성을 가진 캐릭터들이 효과적으로 그룹핑되어 전략적이고 속도감 있게 플레이 할 수 있는 기능을 제공한다.

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계 (Design of the 3D Object Recognition System with Hierarchical Feature Learning)

  • 김주희;김동하;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.13-20
    • /
    • 2016
  • 본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐 패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.

Multiple Properties-Based Moving Object Detection Algorithm

  • Zhou, Changjian;Xing, Jinge;Liu, Haibo
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.124-135
    • /
    • 2021
  • Object detection is a fundamental yet challenging task in computer vision that plays an important role in object recognition, tracking, scene analysis and understanding. This paper aims to propose a multiproperty fusion algorithm for moving object detection. First, we build a scale-invariant feature transform (SIFT) vector field and analyze vectors in the SIFT vector field to divide vectors in the SIFT vector field into different classes. Second, the distance of each class is calculated by dispersion analysis. Next, the target and contour can be extracted, and then we segment the different images, reversal process and carry on morphological processing, the moving objects can be detected. The experimental results have good stability, accuracy and efficiency.

객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱 (3D Content Model Hashing Based on Object Feature Vector)

  • 이석환;권기룡
    • 전자공학회논문지CI
    • /
    • 제47권6호
    • /
    • pp.75-85
    • /
    • 2010
  • 본 논문에서는 3D 콘텐츠 인증을 위한 객체별 특징 벡터 기반 강인한 3D 모델 해싱을 제안한다. 제안한 3D 모델 해싱에서는 다양한 객체들로 구성된 3D 모델에서 높은 면적을 가지는 특징 객체내의 꼭지점 거리들을 그룹화한다. 그리고 각 그룹들을 치환한 다음, 그룹 계수, 랜덤 변수 키와 이진화 과정에 의하여 최종 해쉬를 생성한다. 이 때 해쉬의 강인성은 객체 그룹별 꼭지점 거리 분포를 그룹 계수에 의하여 향상되고, 해쉬의 유일성은 그룹 계수를 치환 키 및 랜덤변수 키 기반의 이진화 과정에 의하여 향상된다. 실험 결과로부터 제안한 해싱이 다양한 메쉬 공격 및 기하학 공격에 대한 해쉬의 강인성과 유일성을 확인하였다.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

실감형 360도 미디어의 RGB 벡터 및 객체 특징정보를 이용한 대표 프레임 선정 방법 (A Reference Frame Selection Method Using RGB Vector and Object Feature Information of Immersive 360° Media)

  • 박병찬;유인재;이재청;장세영;김석윤;김영모
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1050-1057
    • /
    • 2020
  • 실감형 360도 미디어는 기존 영상보다 고품질, 초대용량으로 영상의 크기가 크며, 다양한 렌더링 방식을 사용하여 기존방식으로 이미지 처리할 경우 영상인식 속도가 느려지는 문제가 있다. 또한, 실감형 360도 미디어의 특성상 특정 장소에서 카메라를 고정시켜 한 장면만 촬영하는 경우가 대부분이기 때문에, 모든 영상에서 특징정보를 추출할 필요가 없다. 본 논문에서는 실감형 360 미디어의 프레임 추출과정, 프레임 다운사이징, 구형 형태의 렌더링 과정을 거치고, 렌더링 과정에서 영상을 16개 프레임으로 분할 캡처하여 캡처된 프레임에서 객체 정보가 많은 중앙 부분에서 픽셀당 RGB 벡터와 딥 러닝을 이용하여 객체를 추출한 뒤, 객체 특징정보를 이용하여 대표 프레임을 선정하는 방법을 제안한다.