• 제목/요약/키워드: Object detection and tracking

검색결과 445건 처리시간 0.025초

행동 탐지 기반의 효율적인 객체 선택 알고리듬 (Efficient Object Selection Algorithm by Detection of Human Activity)

  • 박왕배;서융호;두경수;최종수
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.61-69
    • /
    • 2010
  • 본 논문에서는 행동 탐지 기반으로 사람의 지시행위를 인식하여 지시방향의 객체를 선택하고 이를 추적하는 시스템을 제안한다. 일반적으로 사람은 무엇인가를 지시할 경우, 얼굴 방향을 목표물에 두게 된다. 따라서 얼굴과 손끝을 연결한 직선을 지시방향이라 간주하고, 지시된 객체를 선택한다. 제안된 알고리듬에서는 카메라를 통해 입력된 영상으로부터 움직임 영역을 검출하기 위해 배경 차분을 사용하여 실시간으로 관심 객체의 움직임을 추출한다. 보행 여부의 판단은 주성분(PCA) 분석과 객체의 움직임 변위로 결정되며, 이 때 사람이 정지 상태면, 머리를 기준으로 손에 이르는 벡터 관계를 계산하여 사용자의 지시방향을 최종적으로 결정한다. 실험결과를 통하여 다시점 카메라를 이용한 다각도의 영상에서 사람의 지시 방향을 정확하게 추정해 냄으로서 제안된 알고리즘의 유효성을 검증하였다.

동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템 (Augmented Reality System using Planar Natural Feature Detection and Its Tracking)

  • 이아현;이재영;이석한;최종수
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.49-58
    • /
    • 2011
  • 일반적으로 사용되는 마커 기반의 증강현실 시스템은 카메라 입력영상 내에 마커가 항상 존재해야 한다는 제한 때문에 사용자의 접근에 불편을 준다. 때문에 최근 배경 영상에서 취득할 수 있는 객체를 자연 마커로 생성한 시스템이나 배경 영상의 특징을 이용해 기하학적 지도를 작성하여 가상의 객체 정합에 이용한 증강현실 시스템들이 관심을 끌고 있다. 본 논문에서는 카메라 입력 영상에서 동일 평면상에 존재하는 특징들을 검출하고, 이를 추적함으로써 카메라 위치 정보를 추정하는 증강현실 시스템을 제안한다. 또한 특징점 추적에 사용된 추적 방법은 카메라에서 취득한 영상 밖으로 특징점이 벗어날 경우 더 이상 추적할 수 없는 문제점을 가지고 있어, 이를 보완하기 위해 새로운 특징점을 재검출하여 객체의 정합을 유지하는 방법도 제시한다. 제안된 방법은 미리 지정된 마커를 사용하지 않기 때문에 사용자의 접근이 편리하고, 특정한 형태의 마커를 사용하지 않는 다른 시스템보다 비교적 간단하게 구현할 수 있어 다양한 모바일 환경에서 유용하게 이용될 수 있다.

실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구 (Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring)

  • 최우철;나준엽
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.546-554
    • /
    • 2019
  • 본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.

중요지역 보안을 위한 조명환경 적응형 실시간 영상 감시 시스템 (Illumination Environment Adaptive Real-time Video Surveillance System for Security of Important Area)

  • 안성진;이관희;권구락;김남형;고성제
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.116-125
    • /
    • 2007
  • 본 논문에서는 군대 주둔지 교도소 전략적 산업구조물 등 중요한 지역의 보안을 위한 조명환경 적응적인 실시간 영상 감시 시스템을 제안한다. 제안하는 시스템은 밝은 환경에서 뿐만 아니라 객체 판별이 어려운 어두운 환경에서도 객체 추출이 추적이 가능하도록 구현하며 그 절차는 다음과 같다. 첫 번째 단계에서는 입력 영상의 분포를 판별하여 전처리 여부를 판단하고 입력 영상이 어두워 객체 탐지가 어렵다고 판단되는 경우에는 Multi-scale Reinex Color Restoration (MSRCR) 과정을 거처 보정된 입력 영상을 얻는다. 두 번째 단계인 객체 정보 획득 과정에서는 정확한 객체의 추출을 위해 보정된 배경영상과 입력 영상과의 차영상을 이용하여 객체를 탐지하고 이진화 및 모폴로지 등 기본적인 영상처리 작업을 통하여 정확하게 객체를 추출한다. 마지막 단계에서는 추출된 객체의 중심점을 이용하여 좀 더 정확하게 객체를 추적할 수 있도록 한다. 실험 결과에서 제안하는 시스템은 어두운 환경에서 객체의 빠른 움직임에도 불구하고 효율적인 객체 탐지 및 추적을 수행한다.

비전 센서 기반의 사람 검출 및 계수 시스템 (Detecting and Counting People system based on Vision Sensor)

  • 박호식
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2013
  • 보행자의 수는 건물의 출입자 제어, 보행자 소통 관리, 지역 내 유동량 측정 등에 있어서 매우 중요하게 이용되는 정보이다. 그러나 기존의 사람 검출 및 계수 시스템은 겹침이나 그림자나 조명에 의한 부정확한 검출로 인하여 정확한 계수의 어려움이 있었다. 본 논문에서는 카메라로부터 영상을 입력받아 적응적으로 배경 영상을 생성하여 처리함으로써 조명의 변화나 그림자 영향을 최소화 하였다. 또한 Kalman 필터와 Mean-Shift 알고리즘을 이용하여 중복 계수를 방지하여 계수의 정확도를 높일 수 있었다. 실험 결과 95.4%의 계수 정확도를 나타내어 제안된 방법이 사람의 검출 및 계수에 효율적임을 증명하였다.

시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구 (A study on accident prevention AI system based on estimation of bus passengers' intentions)

  • 박성환;변선오;박정훈
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.57-66
    • /
    • 2023
  • 본 논문에서는 시내버스 내 CCTV 시스템을 활용, 비전AI 기반의 승하차 승객 의도를 예측하여 사고방지가 가능한 시스템에 대해 연구한 내용을 기술한다. 본 시스템은 YOLOv7 Pose 모델과 Object Tracking 기술을 활용하여 버스 내부의 승객을 감지하고 추적하며, LSTM 모델을 활용하여 승객의 승하차 여부를 예측한다. 시스템은 버스 내 CCTV 단말기 상에 설치 가능하여 운전 중 어느 때에나 승하차 여부 예측 결과를 시각적으로 확인할 수 있으며, 운전자에게 자동 알람을 주어 승하차 시 일어날 수 있는 사고를 예방할 수 있다. 테스트 결과, 승객의 승차 의도를 분석하는 채널 A와 하차 의도를 예측하는 채널 C에서 각각 0.81과 0.79의 정확도를 달성하였으며, 실시간성을 보장하기 위해 GPU 환경에서 초당 최소 5 프레임 이상의 분석이 가능하다는 것을 확인하였다. 본 알고리즘을 통해 시내버스 운행 중의 승객 승하차 과정을 모니터링하고, 그 안전과 편의성에 도움을 줄 것으로 생각된다. 추후 하드웨어가 발전하고, DB를 통해 데이터가 많이 수집된다면, 이 또한 다양한 안전 관련 지표로의 확장이 가능할 것이다. 더불어 본 알고리즘은 추후 자율주행 버스 상용화 시, 인간을 대신하여 승객 안전에 더욱 핵심적인 역할을 수행할 것이라 생각되며, 기타 지하철 및 승객이 내리고 탈 수 있는 모든 대중교통 환경에의 확장 또한 가능하여 대중교통의 안전화에 도움을 줄 것으로 생각한다.

윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 (SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection)

  • 유승훈;김덕환;이석룡;정진완;김상희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권4호
    • /
    • pp.345-355
    • /
    • 2008
  • 다양한 형태 특징 추출 방법 중의 하나인 SIFT는 물체 인식, 모션 추적, 3차원 이미지 재구성과 같은 컴퓨터 비전 응용 분야에서 많이 사용된다. 하지만 SIFT 방법은 많은 특징점들과 고차원의 특징 벡터를 사용하기 때문에 이미지 유사성 검색에 그대로 적용하기에는 많은 어려움이 있다. 본 논문에서는 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색 기법을 제안한다. 제안한 방법은 윤곽선 이미지 피라미드를 이용하여 이미지의 밝기 변화, 크기, 회전등에 불변한 특징을 추출하고, 타원 형태의 허프변환을 이용한 관심영역 검출을 통해 불필요한 많은 특징점들을 제거하여 검색성능을 높인다. 실험 결과에서 제안한 방법의 이미지 검색 성능이 기존의 SIFT의 방법에 비해 평균 재현율이 약 20%정도 좋은 성능을 보이고 있다.

실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구 (An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking)

  • 채희주;곽경헌;이다연;김은경
    • 한국시뮬레이션학회논문지
    • /
    • 제32권3호
    • /
    • pp.43-53
    • /
    • 2023
  • 본 연구는 실내 상업적 공간, 특히 카페에서 보안 카메라를 이용해 방문자 수와 위치를 실시간으로 파악하고, 이를 통해 사용 가능한 좌석 정보와 혼잡도 예측을 제공하는 시스템의 개발을 목표로 한다. 우리는 실시간 객체 탐지 및 추적 알고리즘인 YOLO를 활용하여 방문자 수와 위치를 실시간으로 파악하며, 이 정보를 카페 실내 지도에 업데이트하여 카페 방문자가 사용 가능한 좌석을 확인할 수 있도록 한다. 또한, 우리는 vanishing gradient문제를 해결한 장단기 메모리(Long Short Term Memory, LSTM)와 시간적인 관계를 가지는 데이터를 처리하는데 유용한 시퀀스-투-시퀀스(Sequence-to-Sequence, Seq2Seq)기법을 활용해 다양한 시간 간격에 따른 방문자 수와 움직임 패턴을 학습하고, 이를 바탕으로 카페의 혼잡도를 실시간으로 예측하는 시스템을 개발하였다. 이 시스템은 카페의 관리자와 이용자 모두에게 예상 혼잡도를 제공함으로써, 카페의 운영 효율성을 향상시키고, 고객 만족도를 높일 수 있다. 본 연구에서는 보안 카메라를 활용한 실내 위치 추적 기술의 효용성을 입증하며, 상업적 공간에서의 활용 가능성과 더불어 미래 연구 방향을 제시한다.

자기 주의 증류를 이용한 심층 신경망 기반의 그림자 제거 (Shadow Removal based on the Deep Neural Network Using Self Attention Distillation)

  • 김진희;김원준
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.419-428
    • /
    • 2021
  • 그림자 제거는 객체 추적 및 검출 등 영상처리 기술의 핵심 전처리 요소이다. 최근 심층 합성곱 신경망 (Deep Convolutional Neural Network) 기반의 영상 인식 기술이 발전함에 따라 심층 학습을 이용한 그림자 제거 연구들이 활발히 진행되고 있다. 본 논문에서는 자기 주의 증류(Self Attention Distillation)를 이용하여 심층 특징을 추출하는 새로운 그림자 제거 방법을 제안한다. 제안된 방법은 각 층에서 추출된 그림자 검출 결과를 하향식 증류를 통해 점진적으로 정제한다. 특히, 그림자 검출 결과에 대한 정답을 이용하지 않고 그림자 제거를 위한 문맥적 정보를 형성함으로써 효율적인 심층 신경망 학습을 수행한다. 그림자 제거를 위한 다양한 데이터 셋에 대한 실험 결과를 통해 제안하는 방법이 실제 환경에서 발생한 그림자 제거에 효과적임을 보인다.

모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델 (Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices)

  • 이재호;신현경
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.117-124
    • /
    • 2014
  • 모바일 기기를 사용한 실시간 비디오 영상처리분야의 중요 객체탐색 및 추적의 문제에 있어서 난제는 복잡한 배경속에서 전경을 구분해 내는 일이다. 본 논문에서는 기계학습을 위한 특성벡터 선정의 문제를 위한 문맥인식 모델을 제시하여 잡음제거를 위한 기계학습기반의 구분자를 구현하였다. 수학적으로 NP-hard로 알려진 가장 가까운 이웃을 사용한 문맥인식 특성벡터 선정 알고리즘의 구현에 있어서, 본 논문은 연산횟수를 줄인 유사방법론에 대해 자세히 거론하였다. 또한, 문맥인식 성격을 가미한 특성벡터 선정을 통해 얻어진 특성 공간에서의 향상된 분리성에 대해 주성분 분석을 통해 엄밀한 분석결과를 제시하였다. 전반적인 성능 향상의 정도를 계측하기 위해 다양한 기계학습 방법론, 예를 들어, 다층신경망, 지원벡터기계, 나이브베이지안, 회귀분석 등을 사용해 비교결과를 제시하였다. 본 논문에서 제시한 방법론의 성능과 계산상 자원사용에 대한 내용을 결론으로 서술하였다.