본 논문은 무인수상정의 자율운항을 위한 장애물 탐지 및 회피기동을 위해 3차원 라이다를 사용하였다. 단일센서만을 사용해서 해상조건에서의 무인수상정 장애물 회피운항을 하는데 목적이 있다. 3차원 라이다는 Quanergy사의 M8센서를 사용하여 주변 환경 장애물 데이터를 (r, , )로 수집하며 장애물 정보에는 Layer 정보와 Intensity 정보를 포함한다. 수집된 데이터를 3차원 직각좌표계로 변환을 하고, 이를 2차원 좌표계로 사상한다. 2차원 좌표계로 변환한 장애물 정보를 포함하는 데이터는 수면위의 잡음데이터를 포함하고 있다. 그래서 기본적으로 무인수상정을 기준으로 가상의 관심영역을 정의하여서 규칙적으로 생성되는 잡음데이터에 대해서 삭제를 하였으며, 그 이후에 발생하는 잡음데이터는 Vector Field Histogram으로 계산된 히스토그램 데이터에서 Threshold를 정해 밀도값에 비례하여 잡음데이터를 제거하였다. 제거된 데이터를 이용하여 무인수상정의 움직임에 따른 상대물체를 탐색하여 가상의 격자지도에 1 Cell씩 저정하면서 데이터의 밀도 지도를 작성하였다. 작성된 장애물 지도를 폴라 히스토그램을 생성하고, 경계값을 이용하여 회피방향을 선정하였다.
위성의 발달에 따라 고해상영상이 등장하게 되었고 지표상태 분석에 매우 유용하게 되었다. GeoWatch는 지능형 영상처리 시스템으로서, 고해상도 영상을 이용하여 디지타이징, 지리보정, 강조, 여러 가지 연산, 식생지수 분석, 등을 하여 지표면 분석 등을 할 수 있는 시스템이다. 도한 지능형 분석 방법등 여러 가지 기법을 이용하여 변화지역분석, 토지 분류, 도시정보추출 등을 수행한다. 이 시스템의 강점은 full scene 영상같은 대용량 영상을 다룰 경우 역동적인 알고리즘 저장 방식을 채택하였고, 자동메뉴 생성, 사용자 편의를 위한 비쥬얼 프로그래밍 환경 등을 제공한다. 이 시스템은 또한 위성영상 위에 벡터를 중첩하여 분석하거나 수정 작업을 할 수 있고, 3차원 비행 시뮬레이션도 가능하다. 이 시스템은 영상 처리 모듈 외에도 영상 변환 및 수정 유틸리티 기능을 많이 제공한다. 본 논문에서는 또한 지능형 영상 분석 방법 뿐만 아니라, 대용량처리나, 비쥬얼 프로그램을 위한 디자인 개념을 제공한다.
본 연구는 시각장애인들이 도로를 안전하게 횡단할 수 있도록 신호등 인식 및 음성안내를 제공해주는 임베디드 시스템의 설계를 제안한다. 시각장애인에게 독립보행은 큰 어려움으로 작용하고 있으며, 독립보행의 제한은 그들의 삶의 질을 저하시키는 요인으로 작용하고 있다. 도로횡단에서의 신호등 인식과 도로 및 차로의 구분 불가는 시각장애인의 독립보행을 방해하는 가장 큰 요인 중 하나이다. 본 연구에서 제안하는 스마트기기는 안경에 달린 초소형 카메라로 GPU 보드에 탑재된 머신러닝 알고리즘을 이용하여 보행자 신호등을 검출 및 인식하며, 음성 안내를 유저에게 전달해준다. 휴대성을 위하여, 기기는 충분한 배터리 수명과 함께 소형 및 가볍게 디자인되었다. 또한, 안경 다리에는 외부 소리를 막지 않으면서 음성 안내를 전달해주는 골전도 스피커가 부착되어 있다. 본 연구에서 제안하는 스마트기기는 실험을 통하여 보행자 신호의 초록 신호에 대하여 87.0%의 검출율(recall)과 100%의 정확도(precision)를 가지며, 빨간 신호에 대하여, 94.4%의 검출율(recall) 값과 97.1%의 정확도(precision)를 가지는 것으로 유효성을 확인하였다.
최근 인공지능 주차관제시스템은 딥러닝을 활용해 차량 번호판에 대한 인식률을 높이고 있지만 위조번호판 부착 차량을 판별하지 못한다는 문제점이 있다. 이러한 보안상의 문제점이 있음에도 불구하고 현재까지 여러 기관에서 기존의 시스템을 그대로 사용하고 있는 상황이다. 실례로 위조번호판을 이용한 실험에서 정부의 주요 기관을 대상으로 진입에 성공한 사례도 있다. 본 논문에서는 이러한 위조번호판을 부착한 차량의 출입을 방지하기 위해서 기존 인공지능 주차관제시스템의 개선 방안을 제시한다. 이를 위해 제안하는 방법은 기존 시스템이 차량의 번호판의 일치여부를 통과기준으로 사용하듯이 이미지에서 특징이 되는 특징점의 정보를 추출해내는 ORB 알고리즘을 활용하여 추출한 차량 앞면 특징점들의 매칭 정도를 통과기준으로 사용하는 방법이다. 또한 내부에 차량이 존재하는지 여부를 확인하는 절차를 제안 시스템에 포함시켜 위조번호판을 부착한 동일 차종 차량의 진입도 방지하였다. 실험 결과, 위조번호판을 부착한 차량들의 진입을 막아내며 기존시스템에 비해 위조번호판을 막아내는 개선된 성능을 보였다. 이러한 결과를 통해 기존 인공지능 주차관제시스템의 체계를 유지하면서 본 논문에서 제안하는 방법들을 기존의 주차관제시스템에 적용하여 위조번호판을 부착한 차량의 출입을 방지할 수 있음을 확인할 수 있었다.
산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가 작거나 밀도가 낮은 이물질들은 X-Ray장비로 촬영을 하여도 보이지 않는 문제점이 있고, 잡음 등으로 인해 이물들이 잘 안 보이는 경우가 있으며, 특히 높은 생산성을 가지기 위해서는 빠른 검사속도가 필요한데, 이 경우 X-ray 촬영시간이 짧아지게 되면 신호 대비 잡음비율(SNR)이 낮아지면서 이물 탐지 성능이 크게 저하되는 문제를 가진다. 따라서, 본 논문에서는 저화질로 인해 이물질을 탐지하기 어려운 한계를 극복하기 위한 5단계 방안을 제안한다. 첫번째로, Global 히스토그램 최적화를 통해 X-Ray영상의 대비를 향상시키고, 두 번째로 고주파 영역 신호의 구분력을 강화하기 위하여 Local contrast기법을 적용하며, 세 번째로 Edge 선명도 향상을 위해 Unsharp masking을 통해 경계선을 강화하여 객체가 잘 구분되도록 한다, 네 번째로, 잡음 제거 및 영상향상을 위해 Resdual Dense Block(RDB)의 초고해상화 방법을 제안하며, 마지막으로 Yolov5 알고리즘을 이용하여 이물질을 학습한 후 탐지한다. 본 연구에서 제안하는 방식을 이용하여 실험한 결과, 저밀도 영상 대비 정밀도 등의 평가기준에서 10%이상의 성능이 향상된다.
본 논문에서는 스테레오 얼굴영상으로부터 3차원 정보인 거리와 깊이 정보를 이용해 거리에 따라 얼굴인식률이 떨어지는 것을 개선하였다. 단안 영상은 객체의 거리, 크기, 이동, 회전, 깊이 등의 불확실한 정보로 인해 인식률이 떨어지는 문제점이 있다. 또한 얼굴의 회전, 조명, 표정변화 등의 영상정보가 취득되지 않으면 인식률이 매우 저하되는 단점이 있다. 그래서 본 연구는 이와 같은 문제점을 해결하고자 한다. 제안된 방법은 눈 검출 알고리듬, 얼굴의 회전 방향분석, PCA(Principal Component Analysis)로 구성된다. 또한 제한된 영역에서 얼굴을 고속으로 검출하기 위해 RGB컬러공간에서 YCbCr공간으로 변환한다. 얼굴후보 영역에서 다층 상대적인 밝기 맵을 생성하여 얼굴의 기하학적인 구조로부터 얼굴인지를 판별한다. 스테레오 얼굴영상으로부터 거리 및 눈과 입의 깊이 정보를 취득하고, 거리에 따라 확대, 축소, 이동, 회전 등의 정규화를 통해 $92{\times}112$ 크기의 얼굴을 검출한다. 검출된 왼쪽 얼굴영상과 추정된 방향의 차를 PCA로 학습한다. 제안된 방법은 정면에서 최대 95.8%(100cm), 포즈변화에 따라 98.3%의 인식률을 얻을 수 있었다. 따라서 실험을 통하여 제안된 방법은 거리에 따라 확대, 축소와 회전 등의 정확한 정규화로 높은 인식률을 얻을 수 있음을 보였다.
본 논문에서는 개인의 성향을 추출하기 위한 딥러닝 기반의 SNS 리뷰 분석 방법을 제안한다. 기존의 SNS 리뷰 분석 방법은 대부분이 가장 높은 가중치를 기반으로 처리되기 때문에 여러 관심사에 대한 다양한 의견을 반영하지 못하는 문제점이 있다. 이를 해결하기 위해 제안된 방법은 음식을 대상으로 한 SNS의 리뷰에서 사용자의 개인적인 성향을 추출하기 위한 방법이다. YOLOv3 모델을 사용하여 분류체계를 작성하고, BiLSTM 모델을 통해 감성분석을 수행한 후 집합 알고리즘을 통해 다양한 개인적 성향을 추출한다. 실험 결과, YOLOv3 모델의 경우 Top-1 88.61%, Top-5 90.13%의 성능을 보여주었으며, BiLSTM 모델의 경우 90.99%의 정확도를 보여주었다. 또한, SNS 리뷰 분류에서의 개인 성향에 대한 다양성을 히트맵을 통해 시각화하여 확인하였다. 향후에는 다양한 분야에서의 개인 성향을 추출하여 사용자 맞춤 서비스나 마케팅 등에 활용될 것으로 기대된다.
일반적으로 사용되는 마커 기반의 증강현실 시스템은 카메라 입력영상 내에 마커가 항상 존재해야 한다는 제한 때문에 사용자의 접근에 불편을 준다. 때문에 최근 배경 영상에서 취득할 수 있는 객체를 자연 마커로 생성한 시스템이나 배경 영상의 특징을 이용해 기하학적 지도를 작성하여 가상의 객체 정합에 이용한 증강현실 시스템들이 관심을 끌고 있다. 본 논문에서는 카메라 입력 영상에서 동일 평면상에 존재하는 특징들을 검출하고, 이를 추적함으로써 카메라 위치 정보를 추정하는 증강현실 시스템을 제안한다. 또한 특징점 추적에 사용된 추적 방법은 카메라에서 취득한 영상 밖으로 특징점이 벗어날 경우 더 이상 추적할 수 없는 문제점을 가지고 있어, 이를 보완하기 위해 새로운 특징점을 재검출하여 객체의 정합을 유지하는 방법도 제시한다. 제안된 방법은 미리 지정된 마커를 사용하지 않기 때문에 사용자의 접근이 편리하고, 특정한 형태의 마커를 사용하지 않는 다른 시스템보다 비교적 간단하게 구현할 수 있어 다양한 모바일 환경에서 유용하게 이용될 수 있다.
본 논문에서는 일반 단일 시점의 축구 비디오를 스테레오스코픽 영상으로 변환하는 방법을 제안한다. 축구 비디오 분석 과정을 통하여 축구 비디오를 일정한 종류의 샷으로 분류하고, 분류된 샷 종류에 따른 깊이지도 생성 방법을 제안한다. 원거리 샷의 경우에는 운동장 영역 추출을 통하여 운동장 영역에 깊이기도 (Depth Map)을 생성하는 방법을 제안한다. 그리고 비 원거리 샷의 경우, 운동장 영역 블록 수와, 간단한 피부색 발견 알고리즘을 통해 생성한 스킨 블록의 수에 따라 다시 3가지로 샷을 분류하고, 각 종류의 샷에 따른 깊이지도 생성 방식 1) 오브젝트 영역 추출을 통한 깊이지도 생성, 2) 스킨 블록을 이용한 전경 영역 추출과 가우시안 함수를 이용한 깊이기도 생성, 그리고 3) 스킨블록이 없는 상황에서의 깊이기도 생성 방법을 제안한다. 제안한 방법을 통하여 생성한 깊이 지도를 이용하여, 스테레오스코픽 영상을 생성하는 방법을 소개하고, 생성한 실험영상을 결과로 제공한다. 그리고 주관적 깊이감 품질 평가를 통해서, 제안된 방법을 통해 생성된 영상이 원본 영상에 비해 깊이감이 향상됨을 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.