• Title/Summary/Keyword: Object detecting

Search Result 555, Processing Time 0.028 seconds

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.

Design of 24GHz Patch Array Antenna for Detecting Obstacles (장애물 감지용 24GHz 대역 패치 배열 안테나 설계)

  • Lee, Kwang;Kim, Young-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1075-1080
    • /
    • 2021
  • In this paper, we designed a 24.4GHz 2-channel TX and 4-channel RX patch array antenna mounted on a short-range vehicle radar system to simultaneously measure the range and speed of a single object within a single measurement cycle. The antenna was designed and fabricated using Rogers' RO4350B(εr=3.48, 0.5T) board. Through measurement, it was confirmed that the design specifications of antenna gain (> 10dBi or more) and radiation pattern (Elevation HPBW > 10deg.) were satisfied at 24.4 GHz frequency.

Autocorrelation Coefficient for Detecting the Frequency of Bio-Telemetry

  • Nakajima, Isao;Muraki, Yoshiya;Yagi, Yukako;Kurokawa, Kiyoshi
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.233-244
    • /
    • 2022
  • A MATLAB program was developed to calculate the half-wavelength of a sine-curve baseband signal with white noise by using an autocorrelation function, a SG filter, and zero-crossing detection. The frequency of the input signal can be estimated from 1) the first zero-crossing (corresponding to ¼λ) and 2) the R value (the Y axis of the correlogram) at the center of the segment. Thereby, the frequency information of the preceding segment can be obtained. If the segment size were optimized, and a portion with a large zero-crossing dynamic range were obtained, the frequency discrimination ability would improve. Furthermore, if the values of the correlogram for each frequency prepared on the CPU side were prepared in a table, the volume of calculations can be reduced by 98%. As background, period detection by autocorrelation coefficients requires an integer multiple of 1/2λ (when using a sine wave as the object of the autocorrelation function), otherwise the correlogram drawn by R value will not exhibit orthogonality. Therefore, it has not been used in bio-telemetry where the frequencies move around.

3D WALK-THROUGH ENVIRONMENTAL MODEL FOR VISUALIZATION OF INTERIOR CONSTRUCTION PROGRESS MONITORING

  • Seungjun Roh;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.920-927
    • /
    • 2009
  • Many schedule delays and cost overruns in interior construction are caused by a lack of understanding in detailed and complicated interior works. To minimize these potential impacts in interior construction, a systematic approach for project managers to detect discrepancies at early stages and take corrective action through use of visualized data is required. This systematic implementation is still challenging: monitoring is time-consuming due to the significant amount of as-built data that needs to be collected and evaluated; and current interior construction progress reports have visual limitations in providing spatial context and in representing the complexities of interior components. To overcome these issues, this research focuses on visualization and computer vision techniques representing interior construction progress with photographs. The as-planned 3D models and as-built photographs are visualized in a 3D walk-through model. Within such an environment, the as-built interior construction elements are detected through computer vision techniques to automatically extract the progress data linked with Building Information Modeling (BIM). This allows a comparison between the as-planned model and as-built elements to be used for the representation of interior construction progress by superimposing over a 3D environment. This paper presents the process of representing and detecting interior construction components and the results for an ongoing construction project. This paper discusses implementation and future potential enhancement of these techniques in construction.

  • PDF

Edge Detection based on Contrast Analysis in Low Light Level Environment (저조도 환경에서 명암도 분석 기반의 에지 검출)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.437-440
    • /
    • 2022
  • In modern society, the use of the image processing field is increasing rapidly due to the 4th industrial revolution and the development of IoT technology. In particular, edge detection is widely used in various fields as an essential preprocessing process in image processing applications such as image classification and object detection. Conventional methods for detecting an edge include a Sobel edge detection filter, a Roberts edge detection filter, a Prewitt edge detection filter, Laplacian of Gaussian (LoG), and the like. However, existing methods have the disadvantage of showing somewhat insufficient performance of edge detection characteristics in a low-light level environment with low contrast. Therefore, this paper proposes an edge detection algorithm based on contrast analysis to increase edge detection characteristics even in low-light level environments.

  • PDF

Design and Implementation of Finger Direction Detection Algorithm in YOLO Environment (YOLO 환경에서 손가락 방향감지 알고리즘 설계 및 구현)

  • Lee, Cheol Min;Thar, Min Htet;Lee, Dong Myung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.28-30
    • /
    • 2021
  • In this paper, an algorithm that detects the user's finger direction using the YOLO (You Only Look Once) library was proposed. The processing stage of the proposed finger direction detection algorithm consists of a learning data management stage, a data learning stage, and a finger direction detection stage. As a result of the experiment, it was found that the distance between the camera and the finger had a very large influence on the accuracy of detecting the direction of the finger. We plan to apply this function to Turtlebot3 after improving the accuracy and reliability of the proposed algorithm in the future.

  • PDF

Object Detection Based on Virtual Humans Learning (가상 휴먼 학습 기반 영상 객체 검출 기법)

  • Lee, JongMin;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.376-378
    • /
    • 2022
  • Artificial intelligence technology is widely used in various fields such as artificial intelligence speakers, artificial intelligence chatbots, and autonomous vehicles. Among these AI application fields, the image processing field shows various uses such as detecting objects or recognizing objects using artificial intelligence. In this paper, data synthesized by a virtual human is used as a method to analyze images taken in a specific space.

  • PDF

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

A Study on Improving the Accuracy of Wafer Align Mark Center Detection Using Variable Thresholds (가변 Threshold를 이용한 Wafer Align Mark 중점 검출 정밀도 향상 연구)

  • Hyeon Gyu Kim;Hak Jun Lee;Jaehyun Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.108-112
    • /
    • 2023
  • Precision manufacturing technology is rapidly developing due to the extreme miniaturization of semiconductor processes to comply with Moore's Law. Accurate and precise alignment, which is one of the key elements of the semiconductor pre-process and post-process, is very important in the semiconductor process. The center detection of wafer align marks plays a key role in improving yield by reducing defects and research on accurate detection methods for this is necessary. Methods for accurate alignment using traditional image sensors can cause problems due to changes in image brightness and noise. To solve this problem, engineers must go directly into the line and perform maintenance work. This paper emphasizes that the development of AI technology can provide innovative solutions in the semiconductor process as high-resolution image and image processing technology also develops. This study proposes a new wafer center detection method through variable thresholding. And this study introduces a method for detecting the center that is less sensitive to the brightness of LEDs by utilizing a high-performance object detection model such as YOLOv8 without relying on existing algorithms. Through this, we aim to enable precise wafer focus detection using artificial intelligence.

  • PDF

Assessment and Correction of the Spectral Quality for the Savart Polarization Interference Imaging Spectrometer

  • Zhongyi Han;Peng Gao;Jingjing Ai;Gongju Liu;Hanlin Xiao
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.518-528
    • /
    • 2023
  • As an effective means of remotely detecting the spectral information of the object, the spectral calibration for the Savart polarization interference imaging spectrometer (SPIIS) is a basis and prerequisite of information quantification, and its experimental calibration scheme is firstly proposed in this paper. In order to evaluate the accuracy of the spectral information acquisition, the linear interpolation, cubic spline interpolation, and piecewise cubic interpolation algorithms are adopted, and the precision of the quadratic polynomial fitting is the highest, whose fitting error is better than 5.8642 nm in the wavelength range of [500 nm, 820 nm]. Besides, the inversed value of the spectral resolution for the monochromatic light is greater than the theoretical value, and the deviation between them becomes larger with the wavelength increasing, which is mainly caused by the structural design of the SPIIS, together with the rationality of the spectral restoration algorithm and the selection of the maximum optical path difference (OPD). This work demonstrates that the SPIIS has achieved high performance assuring the feasibility of its practical use in various fields.