Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.2
/
pp.143-148
/
2012
There are many researches on segmentation of sidescan sonar image to recognize or classify the underwater objects. Although existing algorithms's performance is good in detecting object's shadow and reducing the underwater noise, the computing time is very low. In this paper we try to separate shadow from background and segment the underwater image by using morphological method using background's noise distribution characteristics and object's shadow charateristics. This algorithm is useful when the average of background is lower than the average of the shadow, because this is adjusted from the background's chracteristics. Results shows that the algorithm works fine in multiple object environments and the computing time is reduced to 1 second.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.6
/
pp.731-736
/
2008
In this paper, we propose the movement detection algorithm by using virtual skeleton model. To do this, first, we eliminate error values by using conventioanl method based on RGB color model and eliminate unnecessary values by using the HSI color model. Second, we construct the virtual skeleton model with skeleton information of 10 peoples. After matching this virtual model to original image, we extract the real head silhouette by using the proposed circle searching method. Third, we extract the object by using the mean-shift algorithm and this head information. Finally, we validate the applicability of the proposed method through the various experiments in a complex environments.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.3
/
pp.477-486
/
2016
This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.4
/
pp.69-74
/
2009
Abandoned objects should be treated as possibly dangerous things for public areas until they turn out to be safe because explosive material or chemical substance is intentionally contained in them for public terrors. For large public areas such as airports or train stations, there are limits in man-power for security staffs to check all the monitors for covering the entire area under surveillance. This is the basic motivation of developing the automatic detection system for dangerous abandoned objects based on vision technology. In this research, well-known DBE is applied to stably extract background images and the HOG algorithm is adapted to discriminate between human and stuff for object classification. To show the effectiveness of the proposed system, experiments are carried out in detecting intrusion for a forbidden area and alarming for abandoned objects in a room under surveillance.
The literal meaning of loitering is "to lingering aimlessly or as if aimless in or about a place". And most criminals show this kind of act before they actually commit crime. Therefore, detecting this kind of loitering can effectively prevent a variety of crime. In this paper, we propose a loitering-detection algorithm using the Raspberry Pi. Proposed algorithm uses an adaptive difference image to detect moving objects and morphology opening operation to enhance the accuracy of detection. The loitering- behavior is being detected by using the center of gravity of the object to see the changes of angle; and pixel movement distance to determine the height of the object. When the loitering-behavior is detected, it outputs the alarm to tell the users by using the Raspberry Pi.
Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
Journal of Korea Multimedia Society
/
v.19
no.8
/
pp.1345-1360
/
2016
In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.
Journal of the Korean Society of Industry Convergence
/
v.24
no.5
/
pp.555-562
/
2021
In this paper, we propose a sorting method for extracting accurate license plate information, which is currently used in Korea, after detecting objects using YOLO. We propose sorting methods for the five types of vehicle license plates managed by the Ministry of Land, Infrastructure and Transport by classifying the plates with the number of lines, Korean characters, and numbers. The results of experiments with 5 license plates show that the proposed algorithm identifies all license plate types and information by focusing on the object with high reliability score in the result label file presented by YOLO and deleting unnecessary object information. The proposed method will be applicable to all systems that recognize license plates.
International Journal of Advanced Culture Technology
/
v.10
no.4
/
pp.536-546
/
2022
A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.
Kim, Kyeong Su;Lee, Jae In;Gwak, Seok Woo;Kang, Won Yul;Shin, Dae Young;Hwang, Sung Ho
Journal of Drive and Control
/
v.19
no.3
/
pp.9-15
/
2022
This paper proposes a method for constructing and verifying datasets used in deep learning technology, to prevent safety accidents in automated construction machinery or autonomous vehicles. Although open datasets for developing image recognition technologies are challenging to meet requirements desired by users, this study proposes the interface of virtual simulators to facilitate the creation of training datasets desired by users. The pixel-level training image dataset was verified by creating scenarios, including various road types and objects in a virtual environment. Detecting an object from an image may interfere with the accurate path determination due to occlusion areas covered by another object. Thus, we construct a database, for developing an occlusion area detection algorithm in a virtual environment. Additionally, we present the possibility of its use as a deep learning dataset to calculate a grid map, that enables path search considering occlusion areas. Custom datasets are built using the RDBMS system.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.109-111
/
2021
Recently, computer vision research using light field cameras has been actively conducted. Since light field cameras have spatial information, various studies are being conducted in fields such as depth map estimation, super resolution, and 3D object detection. In this paper, we propose a method for detecting objects in blur images through a 7×7 array of images acquired through a light field camera. The blur image, which is weak in the existing camera, is detected through the light field camera. The proposed method uses the SSD algorithm to evaluate the performance using blur images acquired from light field cameras.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.