• 제목/요약/키워드: Object Recognition Technology

검색결과 471건 처리시간 0.076초

CCD카메라와 적외선 카메라의 융합을 통한 효과적인 객체 추적 시스템 (Efficient Object Tracking System Using the Fusion of a CCD Camera and an Infrared Camera)

  • 김승훈;정일균;박창우;황정훈
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.229-235
    • /
    • 2011
  • To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.

Comparison of estimating vegetation index for outdoor free-range pig production using convolutional neural networks

  • Sang-Hyon OH;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1254-1269
    • /
    • 2023
  • This study aims to predict the change in corn share according to the grazing of 20 gestational sows in a mature corn field by taking images with a camera-equipped unmanned air vehicle (UAV). Deep learning based on convolutional neural networks (CNNs) has been verified for its performance in various areas. It has also demonstrated high recognition accuracy and detection time in agricultural applications such as pest and disease diagnosis and prediction. A large amount of data is required to train CNNs effectively. Still, since UAVs capture only a limited number of images, we propose a data augmentation method that can effectively increase data. And most occupancy prediction predicts occupancy by designing a CNN-based object detector for an image and counting the number of recognized objects or calculating the number of pixels occupied by an object. These methods require complex occupancy rate calculations; the accuracy depends on whether the object features of interest are visible in the image. However, in this study, CNN is not approached as a corn object detection and classification problem but as a function approximation and regression problem so that the occupancy rate of corn objects in an image can be represented as the CNN output. The proposed method effectively estimates occupancy for a limited number of cornfield photos, shows excellent prediction accuracy, and confirms the potential and scalability of deep learning.

지역 특징을 사용한 실시간 객체인식 (Real-Time Object Recognition Using Local Features)

  • 김대훈;황인준
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.224-231
    • /
    • 2010
  • 이미지에서의 자동 객체 인식은 컴퓨터 비젼 및 패턴 분석을 포함한 많은 분야에서 아주 중요한 이슈중의 하나이다. 특히, 최근 스마트폰과 같은 개인용 이동형 단말기가 빠르게 보급되면서, 그러한 기술들을 지원할 필요성이 커지게 되었다. 이러한 단말기들은 대개 카메라, GPS, 가속도 센서 등과 같은 장치들을 갖추고 있으며 사용자들에게 다양한 서비스를 편리한 인터페이스를 통해 제공하고 있다. 하지만 제한된 시스템 자원 때문에 처리속도가 비교적 느리다는 문제점을 가지고 있다. 본 논문에서 우리는 전처리 과정과 단순 지역 특징을 기반으로 한 객체 인식 성능 향상 기법을 제안한다. 전처리 단계에서는, 우선 객체 종류별 이미지로부터 각 객체의 특징이라고 생각되는 부분을 자동으로 판별하고 비슷한 부분끼리 분류한 다음 이들의 특징을 추출하고 학습한다. 질의 영상에 대해 우선 지역 특징 후보들을 파악한 다음 전처리 과정에서 학습된 정보와 비교하여 객체인식을 하게 된다. 실험을 통하여 제안된 기법의 객체 인식 성능을 보인다.

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

360° 스트리밍 영상에서의 객체 인식 연구 (Object Recognition in 360° Streaming Video)

  • 윤정록;전성국;김회민;김운용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.317-318
    • /
    • 2019
  • 가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.

  • PDF

Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법 (Road Surface Damage Detection based on Object Recognition using Fast R-CNN)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권2호
    • /
    • pp.104-113
    • /
    • 2019
  • 도로 관리 주체는 도로 파손을 보수하기 위해 적지 않은 비용을 투입한다. 이러한 파손은 자연 요인과 노후화로 인하여 필연적으로 발생을 하는데, 효율적인 보수를 위한 유지보수 기술이 필요하다. 이런 수요에 대응하기 위해 여러 가지 기술들이 개발되고 적용되고 있지만, 최근 들어서는 차량용 블랙박스 형태로 수집한 영상 정보를 바탕으로 도로 노면 파손 유지 보수기술이 개발되고 있다. 이 파손 영역을 추출하는 방법에는 여러 가지가 있지만, 본 논문에서는 최근 활발히 연구되고 있는 심층 신경망 구조의 영상인식 기술에 대해 논하고자 한다. 특히 영역 기반의 합성곱 알고리즘을 이용하여 영상 내에서 도로 파손 유무와 그 영역을 추정할 수 있는 새로운 심층 신경망을 소개한다. 이를 개발하기 위해 실제 주행을 통해서 600여장의 영상 데이터를 수집하였고, 이를 활용하여 학습을 수행하였다. 그 결과 기존 모델과 성능을 비교하여 10.67% 향상된 신경망을 개발하였다.

실내 환경에서 Chirp Emission과 Echo Signal을 이용한 심층신경망 기반 객체 감지 기법 (DECODE: A Novel Method of DEep CNN-based Object DEtection using Chirps Emission and Echo Signals in Indoor Environment)

  • 남현수;정종필
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.59-66
    • /
    • 2021
  • 인간은 오감 (시각, 청각, 후각, 촉각, 미각) 중 시각 및 청각 정보를 위주로 사용하여 주변 물체를 인식한다. 최신의 객체 인식과 관련한 주요 연구에서는 주로 이미지센서 정보를 이용한 분석에 초점이 맞추어져 있다. 본 논문에서는 다양한 chirp 오디오 신호를 관측공간에 방출하고 2채널 수신센서를 통해 echo를 수집하여 스펙트럼 이미지로 변화시킨 후 딥러닝을 기반으로 이미지 학습 알고리즘을 이용하여 3D 공간상의 객체 인식 실험을 진행하였다. 본 실험은 무향실의 이상적 조건이 아닌 일반적인 실내 환경에서 발생하는 잡음 및 echo가 있는 환경에서 실험을 진행하였고 echo를 통해 객체 인식률을 83% 정확도로 물체의 위치 추정할 수 있었다. 또 한 추론 결과를 관측공간과 3D Sound 공간 신호로 mapping 하여 소리로 출력하여 3D 사운드의 학습을 통해 소리를 통한 시각 정보를 얻을 수 있었다. 이는 객체 인식 연구를 위해서 이미지 정보와 함께 다양한 echo 정보의 활용이 요구된다는 의미이며 이런 기술을 3D 사운드를 통한 증강현실 등에 활용 가능할 것이다.

객체 검출을 위한 2차원 인조데이터 셋 구축 시스템과 데이터 특징 및 배치 구조에 따른 검출률 분석 : 자동차 번호판 검출을 중점으로 (2D Artificial Data Set Construction System for Object Detection and Detection Rate Analysis According to Data Characteristics and Arrangement Structure: Focusing on vehicle License Plate Detection)

  • 김상준;최진원;김도영;박구만
    • 방송공학회논문지
    • /
    • 제27권2호
    • /
    • pp.185-197
    • /
    • 2022
  • 최근 객체 인식에 높은 성능을 가진 딥러닝 네트워크가 나오고 있다. 딥러닝을 이용한 객체 인식의 경우 성능 향상을 위해 학습 데이터 셋 구축이 중요하다. 데이터 셋을 구축하기 위해서는 이미지를 수집하고 라벨링 해야 한다. 이 과정은 많은 시간과 인력이 필요하다. 때문에 오픈 데이터 셋을 사용한다. 그러나 방대한 오픈 데이터 셋을 가지고 있지 않는 객체도 존재한다. 그 중 하나가 번호판 검출과 인식에 필요한 데이터이다. 이에 본 논문에서는 이미지를 최소화 하여 대용량 데이터 셋을 만들 수 있는 인조 번호판 생성기 시스템을 제안한다. 또한 인조 번호판 배치구조에 따른 검출률을 분석했다. 분석결과 가장 좋은 배치구조는 FVC_III, B이며 가장 적합한 네트워크는 D2Det이었다. 인조 데이터셋 성능은 실제 데이터셋의 성능보다 2~3%가 낮았지만, 인조 데이터를 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터 셋 구축 시스템임을 증명하였다.

Dual Autostereoscopic Display Platform for Multi-user Collaboration with Natural Interaction

  • Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.466-469
    • /
    • 2012
  • In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.

인공지능 이미지 인식 기술을 활용한 위험 알림 CCTV 서비스 (Danger Alert Surveillance Camera Service using AI Image Recognition technology)

  • 이하린;김유진;이민아;문재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.814-817
    • /
    • 2020
  • The number of single-person households is increasing every year, and there are also high concerns about the crime and safety of single-person households. In particular, crimes targeting women are increasing. Although home surveillance camera applications, which are mostly used by single-person households, only provide intrusion detection functions, this service utilizes AI image recognition technologies such as face recognition and object detection to provide theft, violence, stranger and intrusion detection. Users can receive security-related notifications, relieve their anxiety, and prevent crimes through this service.