Real-Time Object Recognition Using Local Features

지역 특징을 사용한 실시간 객체인식

  • 김대훈 (고려대학교 전자전기공학과) ;
  • 황인준 (고려대학교 전기전자전파공학과)
  • Received : 2010.09.03
  • Accepted : 2010.09.29
  • Published : 2010.09.30

Abstract

Automatic detection of objects in images has been one of core challenges in the areas such as computer vision and pattern analysis. Especially, with the recent deployment of personal mobile devices such as smart phone, such technology is required to be transported to them. Usually, these smart phone users are equipped with devices such as camera, GPS, and gyroscope and provide various services through user-friendly interface. However, the smart phones fail to give excellent performance due to limited system resources. In this paper, we propose a new scheme to improve object recognition performance based on pre-computation and simple local features. In the pre-processing, we first find several representative parts from similar type objects and classify them. In addition, we extract features from each classified part and train them using regression functions. For a given query image, we first find candidate representative parts and compare them with trained information to recognize objects. Through experiments, we have shown that our proposed scheme can achieve resonable performance.

이미지에서의 자동 객체 인식은 컴퓨터 비젼 및 패턴 분석을 포함한 많은 분야에서 아주 중요한 이슈중의 하나이다. 특히, 최근 스마트폰과 같은 개인용 이동형 단말기가 빠르게 보급되면서, 그러한 기술들을 지원할 필요성이 커지게 되었다. 이러한 단말기들은 대개 카메라, GPS, 가속도 센서 등과 같은 장치들을 갖추고 있으며 사용자들에게 다양한 서비스를 편리한 인터페이스를 통해 제공하고 있다. 하지만 제한된 시스템 자원 때문에 처리속도가 비교적 느리다는 문제점을 가지고 있다. 본 논문에서 우리는 전처리 과정과 단순 지역 특징을 기반으로 한 객체 인식 성능 향상 기법을 제안한다. 전처리 단계에서는, 우선 객체 종류별 이미지로부터 각 객체의 특징이라고 생각되는 부분을 자동으로 판별하고 비슷한 부분끼리 분류한 다음 이들의 특징을 추출하고 학습한다. 질의 영상에 대해 우선 지역 특징 후보들을 파악한 다음 전처리 과정에서 학습된 정보와 비교하여 객체인식을 하게 된다. 실험을 통하여 제안된 기법의 객체 인식 성능을 보인다.

Keywords

References

  1. S. Ullman, "High-level vision: object recognition and visual cognition," MIT Press, 1996.
  2. A. J. Colmenarez and T. S. Huang, "Face Detection With Information-Based Maximum Discrimination," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 782-787, 1997.
  3. H. A. Rowley, S. Baluja and T. Kanade, "Neural network based face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, 1998. https://doi.org/10.1109/34.655647
  4. E. Osuna, R. Freund and F. Girosi, "Training support vector machines: an application to face detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 130-136, 1997.
  5. M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  6. B. Moghaddam and A. Pentland, "Probabilistic visual learning for object detection," Proceedings of the Fifth International Conference on Computer Vision, 1995.
  7. Y. Amit and D. Geman, "A computational model for visual selection," Neural Computation, vol. 11, no. 7, pp. 1691-1715, 1999. https://doi.org/10.1162/089976699300016197
  8. M-H. Yang, D. Roth and N. Ahuja, "A SNoW-based face detector," in Advances in Neural Information Processing Systems 12, Sara A. Solla, Todd K. Leen, and Klaus-Rober Muller. , Eds., pp. 855-861 , 2000.
  9. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001.
  10. L. Shams and J. Spoeslstra, "Learning Gabor-based features for face detection," in Proceedings of World Congress in Neural Networks, International Neural Network Society, pp. 15-20, 1996.
  11. C. Papageorgiou and T. Poggio, "A trainable system for object detection," International Journal of Computer Vision, vol. 38, no. 1, pp. 15-33, 2000. https://doi.org/10.1023/A:1008162616689
  12. Y. LeCun, P. Haffner, L. Bottou and Y. Bengio, "Object recognition with gradient-based learning," in Feature Grouping, D. Forsyth, Ed., 1999.
  13. H. Schneiderman and T. Kanade, "A statistical method for 3D object detection applied to faces and cars," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 746-751, 2000.
  14. E. Borenstein and S. Ullman, "Combined Top-Down/Bottom-Up Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2109-2125, 2008. https://doi.org/10.1109/TPAMI.2007.70840
  15. P. Viola and Michael J. Jones, "Robust Real-time Object Detection," International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  16. M. Ulrich, C. Steger and A. Baumgartner, "Real-time object recognition using a modified generalized Hough transform," International Journal of Pattern Recognition, vol. 36, no. 11, pp. 2557-2570, 2003. https://doi.org/10.1016/S0031-3203(03)00169-9
  17. J. Gausemeier, J. Fruend, C. Matysczok, B. Bruederlin and D. Beier, "Development of a real time image based object recognition method for mobile AR-devices," in Proceedings of the 2nd international conference Computer graphics, virtual Reality, visualization and interaction in Africa, pp. 133-139, 2003.
  18. A. Mohan, C. Papageorgiou, and T. Poggio, "Example-based object detection in images by components," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no.4, pp. 349-361, 2001. https://doi.org/10.1109/34.917571
  19. S. Agarwal, A. Awan and D. Roth, "Learning to Detect Objects in Images via a Sparse, Part-Based Representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-1490, 2004. https://doi.org/10.1109/TPAMI.2004.108
  20. T. Kadir and M. Brady, "Scale, Saliency and Image Description," International Journal of Computer Vision, vol. 45, no. 2, pp. 83-105, 2001. https://doi.org/10.1023/A:1012460413855
  21. M. Weber, M. Welling and P. Perona, "Unsupervised learning of models for recognition," in Proceedings of the Sixth European Conference on Computer Vision, pp. 18-32, 2000.
  22. R. M. Haralick and L. G. Shapiro, "Computer and Robot Vision II," Addison-Wesley, 1993.
  23. T. Darrel, P. Indyk and G. Shakhnarovich, "Locality-sensitive hashing scheme based on p-stable distributions," Nearest Neighbor Methods in Learning and Vision: Theory and Practice, MIT Press, 2006.
  24. D. N. Bhat and S. K. Nayar, "Ordinal Measures for Image Correspondence," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 4, pp. 415-423, 1998. https://doi.org/10.1109/34.677275
  25. L. Fei-Fei, R. Fergus and P. Perona, "Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories," in Workshop on Generative-Model Based Vision, 2004.
  26. H. Zhang, A. Berg, M. Maire, and J. Malik, "SVM-KNN: Discriminative Nearset Neighbor Classification for Visual Category Recognition," in CVPR, 2006.
  27. K. Grauman and T. Darrell, "Pyramic match kernels: Discriminative classficiation with sets of image features (version 2)," Tech. Rep. MIT CSAIL TR 2006-020, MIT, March 2006.
  28. A. Frome and Y. Singer, "Image Retrieval and Classification Using Local Distance Functions," in NIPS 2006.