• 제목/요약/키워드: Object Recognition Region

검색결과 136건 처리시간 0.029초

물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정 (An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition)

  • 김동기;이성규;이문욱;강이석
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

Covariance-based Recognition Using Machine Learning Model

  • Osman, Hassab Elgawi
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.223-228
    • /
    • 2009
  • We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.

  • PDF

문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구 (A Study on Rotational Alignment Algorithm for Improving Character Recognition)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.79-84
    • /
    • 2019
  • 영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Signature 기반의 겹쳐진 원형 물체 검출 및 인식 기법 (Detection and Recognition of Overlapped Circular Objects based a Signature Representation Scheme)

  • 박상범;한헌수;한영준
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2008
  • This paper proposes a new algorithm for detecting and recognizing overlapped objects among a stack of arbitrarily located objects using a signature representation scheme. The proposed algorithm consists of two processes of detecting overlap of objects and of determining the boundary between overlapping objects. To determine overlap of objects, in the first step, the edge image of object region is extracted and those areas in the object region are considered as the object areas if an area is surrounded by a closed edge. For each object, its signature image is constructed by measuring the distances of those edge points from the center of the object, along the angle axis, which are located at every angle with reference to the center of the object. When an object is not overlapped, its features which consist of the positions and angles of outstanding points in the signature are searched in the database to find its corresponding model. When an object is overlapped, its features are partially matched with those object models among which the best matching model is selected as the corresponding model. The boundary among the overlapping objects is determined by projecting the signature to the original image. The performance of the proposed algorithm has been tested with the task of picking the top or non-overlapped object from a stack of arbitrarily located objects. In the experiment, a recognition rate of 98% has been achieved.

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Adaptive Thinning Algorithm for External Boundary Extraction

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제4권4호
    • /
    • pp.75-80
    • /
    • 2016
  • The process of extracting external boundary of an object is a very important process for recognizing an object in the image. The proposed extraction method consists of two processes: External Boundary Extraction and Thinning. In the first step, external boundary extraction process separates the region representing the object in the input image. Then, only the pixels adjacent to the background are selected among the pixels constituting the object to construct an outline of the object. The second step, thinning process, simplifies the outline of an object by eliminating unnecessary pixels by examining positions and interconnection relations between the pixels constituting the outline of the object obtained in the previous extraction process. As a result, the simplified external boundary of object results in a higher recognition rate in the next step, the object recognition process.

이미지 인식을 위한 객체 식별 및 지역화 (Object Identification and Localization for Image Recognition)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.49-55
    • /
    • 2012
  • This paper proposes an efficient method of object identification and localization for image recognition. The new proposed algorithm utilizes correlogram back-projection in the YCbCr chromaticity components to handle the problem of sub-region querying. Utilizing similar spatial color information enables users to detect and locate primary location and candidate regions accurately, without the need for additional information about the number of objects. Comparing this proposed algorithm to existing methods, experimental results show that improvement of 21% was observed. These results reveal that color correlogram is markedly more effective than color histogram for this task. Main contribution of this paper is that a different way of treating color spaces and a histogram measure, which involves information on spatial color, are applied in object localization. This approach opens up new opportunities for object detection for the use in the area of interactive image and 2-D based augmented reality.

A binocular robot vision system with quadrangle recognition

  • Yabuta, Yoshito;Mizumoto, Hiroshi;Arii, Shiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.80-83
    • /
    • 2005
  • A binocular robot vision system having an autonomously moving active viewpoint is proposed. By using this active viewpoint, the system constructs a correspondence between the images of a feature points on the right and left retinas and calculates the spatial coordinates of the feature points. The system incorporates a function of detecting straight lines in an image. To detect lines the system uses Hough transform. The system searches a region surrounded by 4 straight lines. Then the system recognizes the region as a quadrangle. The system constructs a correspondence between the quadrangles in the right and left images. By the use of the result of the constructed correspondence, the system calculates the spatial coordinates of an object. An experiment shows the effect of the line detection using Hough transform, the recognition of the surface of the object and the calculation of the spatial coordinates of the object.

  • PDF