• Title/Summary/Keyword: Object Recognition Algorithm

Search Result 517, Processing Time 0.027 seconds

A Study on Image Segmentation Method Based on a Histogram for Small Target Detection (소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구)

  • Yang, Dong Won;Kang, Suk Jong;Yoon, Joo Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1305-1318
    • /
    • 2012
  • Image segmentation is one of the difficult research problems in machine vision and pattern recognition field. A commonly used segmentation method is the Otsu method. It is simpler and easier to implement but it fails if the histogram is unimodal or similar to unimodal. And if some target area is smaller than background object, then its histogram has the distribution close to unimodal. In this paper, we proposed an improved image segmentation method based on 1D Otsu method for a small target detection. To overcome drawbacks by unimodal histogram effect, we depressed the background histogram using a logarithm function. And to improve a signal to noise ratio, we used a local average value by the neighbor window for thresholding using 1D Otsu method. The experimental results show that our proposed algorithm performs better segmentation result than a traditional 1D Otsu method, and needs much less computational time than that of the 2D Otsu method.

Image Analysis for Discrimination of Neoplastic Cellis in Spatial Frequency Domain (종양세포식별을 위한 공간주파수영역에서의 화상해석)

  • 나철훈;김창원;김현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.385-396
    • /
    • 1993
  • In this paper, a improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the thyroid gland cell image, and the purpose was automatic discrimination of three classes cells(normal cell, follicular neoplastic cells, and papillary neoplastic cells) by difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a consequency of using features proposed in this paper, get a better recognition rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells, The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Estimation of User Activity States for Context-Aware Computing in Mobile Devices (모바일 디바이스에서 상황인식 컴퓨팅을 위한 사용자 활동 상태 추정)

  • Baek Jonghun;Yun Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.67-74
    • /
    • 2006
  • Contort-aware computing technology is one of the key technology of ubiquitous computing in the mobile device environment. Context recognition computing enables computer applications that automatically respond to user's everyday activity to be realized. In this paper, We use accelerometer could sense activity states of the object and apply to mobile devices. This method for estimating human motion states utilizes various statistics of accelerometer data, such as mean, standard variation, and skewness, as features for classification, and is expected to be more effective than other existing methods that rely on only a few simple statistics. Classification algorithm uses simple decision tree instead of existing neural network by considering mobile devices with limited resources. A series of experiments for testing the effectiveness of the our context detection system for mobile applications and ubiquitous computing has been performed, and its result is presented.

A study on a local descriptor and entropy-based similarity measure for object recognition system being robust to local illumination change (지역적 밝기 변화에 강인한 물체 인식을 위한 지역 서술자와 엔트로피 기반 유사도 척도에 관한 연구)

  • Yang, Jeong-Eun;Yang, Seung-Yong;Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1112-1118
    • /
    • 2014
  • In this paper, we propose a local descriptor and a similarity measure that is robust to radiometic variations. The proposed local descriptor is made up Haar wavelet filter and it can contain frequency informations about the feature point and its surrounding pixels in fixed region, and it is able to describe feature point clearly under ununiform illumination condition. And a proposed similarity measure is combined with conventional entropy-based similarity and another similarities that is generated by local descriptor. It can reflect similarities between image regions accurately under radiometic illumination variations. We validate with experimental results on some images and we confirm that the proposed algorithm is more superior than conventional algorithms.

SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection (윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Deok-Hwan;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.345-355
    • /
    • 2008
  • SIFT is popularly used in computer vision application such as object recognition, motion tracking, and 3D reconstruction among various shape descriptors. However, it is not easy to apply SIFT into the image similarity search as it is since it uses many high dimensional keypoint vectors. In this paper, we present a SIFT based image similarity search method using an edge image pyramid and an interesting region detection. The proposed method extracts keypoints, which is invariant to contrast, scale, and rotation of image, by using the edge image pyramid and removes many unnecessary keypoints from the image by using the hough transform. The proposed hough transform can detect objects of ellipse type so that it can be used to find interesting regions. Experimental results demonstrate that the retrieval performance of the proposed method is about 20% better than that of traditional SIFT in average recall.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

An Efficient Computation Method of Zernike Moments Using Symmetric Properties of the Basis Function (기저 함수의 대칭성을 이용한 저니키 모멘트의 효율적인 계산 방법)

  • 황선규;김회율
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.563-569
    • /
    • 2004
  • A set of Zernike moments has been successfully used for object recognition or content-based image retrieval systems. Real time applications using Zernike moments, however, have been limited due to its complicated definition. Conventional methods to compute Zernike moments fast have focused mainly on the radial components of the moments. In this paper, utilizing symmetric/anti-symmetric properties of Zernike basis functions, we propose a fast and efficient method for Zernike moments. By reducing the number of operations to one quarter of the conventional methods in the proposed method, the computation time to generate Zernike basis functions was reduced to about 20% compared with conventional methods. In addition, the amount of memory required for efficient computation of the moments is also reduced to a quarter. We also showed that the algorithm can be extended to compute the similar classes of rotational moments, such as pseudo-Zernike moments, and ART descriptors in same manner.

Robust Hand-Region Detecting Based On The Structure (환경 변화에 강인한 구조 기반 손 영역 탐지)

  • Lim, Kyoung-Jin;Jeon, Mi-Yeon;Hong, Rok-Ki;Seo, Seong-Won;Shin, Mi-Hae;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.389-392
    • /
    • 2010
  • In this paper, it presents to detect location using structural information of hand from the input color images on Webcam and to recognize hand gestures. In this system, based on the skin color, the image changes a binary number and labels. Within each labeled area, we can find the Maximum Inscribed Circle using Voronoi Diagram. This circle can find the center of hand. And the circle extracts hand region from analyzing the ellipse elements to relate Maximum Inscribed Circle. We use the Maximum Inscribed Circle and the ellipse elements as characteristic of hand gesture recognition. In various environments, we cannot recognize the object that have similar colors like the background colors. But the proposed algorithm has the advantage that can be effectively eliminated about it.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF