• Title/Summary/Keyword: Object Position

Search Result 1,226, Processing Time 0.029 seconds

Determination of Optimal Position of an Active Camera System Using Inverse Kinematics of Virtual Link Model and Manipulability Measure (가상 링크 모델의 역기구학과 조작성을 이용한 능동 카메라 시스템의 최적 위치 결정에 관한 연구)

  • Chu, Gil-Whoan;Cho, Jae-Soo;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.239-242
    • /
    • 2003
  • In this paper, we propose how to determine the optimal camera position using inverse kinematics of virtual link model and manipulability measure. We model the variable distance and viewing direction between a target object and a camera position as a virtual link. And, by using inverse kinematics of virtual link model, we find out regions that satisfy the direction and distance constraints for the observation of target object. The solution of inverse kinematics of virtual link model simultaneously satisfies camera accessibility as well as a direction and distance constraints. And we use a manipulability measure of active camera system in order to determine an optimal camera position among the multiple solutions of inverse kinematics. By using the inverse kinematics of virtual link model and manipulability measure, the optimal camera position in order to observe a target object can be determined easily and rapidly.

  • PDF

Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control (비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

Kinematic Method of Camera System for Tracking of a Moving Object

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.145-149
    • /
    • 2010
  • In this paper, we propose a kinematic approach to estimating the real-time moving object. A new scheme for a mobile robot to track and capture a moving object using images of a camera is proposed. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

A Method for Extracting Shape and Position of an Object using Partial M-array

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.262-265
    • /
    • 1999
  • This paper describes a new method for object extraction necessary for image tracking systems. The extraction method which this paper proposes here is that an M-array is set between a camera and the object and the obtained image including the object and M-array is pro-cessed for extracting the object. The image processing utilizes a characteristic of M-array which is robust to noise. When an M-array is overlapped on the object in background image, the object woud have a part of M-array, which is detected by use of partial correlation between the mosaic image of M-array and the standard M-array. Thus the shape and position of the object are extracted by extracting a common domain of width of high correlation value. Experiments are carried out by using an actual photo of Kumamoto city taken from an airplane as background, and by use of a rectangular and circular object. The results of experiment show a wide application of this method for practical image tracking systems.

  • PDF

An Efficient Method of Scanning and Tracking for AR

  • Park, Yerang;Chin, Seongah
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 2019
  • In this paper, we propose an efficient method for AR toolkit Vuforia. In order to increase the scan rate when using the 3D object scanner, the scan rate parameters need to be analyzed in terms of the angle and distance. In addition, in order to increase the tracking rate when tracking an object, the tracking rate has to be evaluated according to the position, complexity, and contrast of the object. To this end, we have defined the difference of scan rate according to angle and distance between camera and object when using object scanner and the recognition time according to object's position, complexity and contrast when tracking object.

A Study on Tracking a Moving Object using Photogrammetric Techniques - Focused on a Soccer Field Model - (사진측랑기법을 이용한 이동객체 추적에 관한 연구 - 축구장 모형을 중심으로 -)

  • Bae Sang-Keun;Kim Byung-Guk;Jung Jae-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Extraction and tracking objects are fundamental and important steps of the digital image processing and computer vision. Many algorithms about extracting and tracking objects have been developed. In this research, a method is suggested for tracking a moving object using a pair of CCD cameras and calculating the coordinate of the moving object. A 1/100 miniature of soccer field was made to apply the developed algorithms. After candidates were selected from the acquired images using the RGB value of a moving object (soccer ball), the object was extracted using its size (MBR size) among the candidates. And then, image coordinates of a moving object are obtained. The real-time position of a moving object is tracked in the boundary of the expected motion, which is determined by centering the moving object. The 3D position of a moving object can be obtained by conducting the relative orientation, absolute orientation, and space intersection of a pair of the CCD camera image.

Position Measurements of Moving Object in Cartesian Coordinate (직교좌표에서 이동물체의 위치측정)

  • 이용중;노재희;이양범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.36-42
    • /
    • 2001
  • In this paper, PSD(Position Sensitive Detector) sensor system that estimates position for moving objects in 2D plane is developed. PSD sensor is used to measure the position the position of and incidence light in real-time. To get the position of light source of moving target, a new parameter calibration algorithm and neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF

Effects of Trunk Twist on Postural Sway During Manually Handling Flat Ties (플렛타이 인력물자취급서 몸통 비틀기에 따른 신체자세 동요에 대한 연구)

  • Kim, Sung-Won;Park, Sung-Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • We investigated the effects of trunk twist on postural stability during manually handling flat ties. Ten male subjects participated in this study. While handling 5kgf and 10kgf bundles of flat ties respectively, their centers of pressure (COPs) were measured under two levels of body position (twisted and fixed), two levels of direction (left and right), and three levels of object position ($30^{\circ}$, $45^{\circ}$, and $60^{\circ}$). Subjects' postural stability was quantified by calculating the sway length. Results showed that the effect of different object position was significant on postural sway length in subject's medio-lateral axis. Post-hoc multiple comparions revealed that, under the 5kgf load condition, the sway length was increased significantly as the object position increased to $45^{\circ}$. Under the 10kgf load condition, however, the sway length was increased significantly at the object position of $60^{\circ}$. Actual or potential applications of this research include guidelines for the design of working posture evaluation techniques.

The Study of automatic region segmentation method for Non-rigid Object Tracking (Non-rigid Object의 추적을 위한 자동화 영역 추출에 관한 연구)

  • 김경수;정철곤;김중규
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.183-186
    • /
    • 2001
  • This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.

  • PDF

Implementation of Tracking and Capturing a Moving Object using a Mobile Robot

  • Kim Sang-joo;Park Jin-woo;Lee Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.444-452
    • /
    • 2005
  • A new scheme for a mobile robot to track and capture a moving object using camera images is proposed. The moving object is assumed to be a point-object and is projected onto an image plane to form a geometrical constraint equation that provides the position data of the object based on the kinematics of the active camera. Uncertainties in position estimation caused by the point-object assumption are compensated for using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. In this paper, the experimental results of the tracking and capturing of a target object with the mobile robot are presented.