• Title/Summary/Keyword: Object Localization

Search Result 175, Processing Time 0.021 seconds

Grad-CAM based deep learning network for location detection of the main object (주 객체 위치 검출을 위한 Grad-CAM 기반의 딥러닝 네트워크)

  • Kim, Seon-Jin;Lee, Jong-Keun;Kwak, Nae-Jung;Ryu, Sung-Pil;Ahn, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.204-211
    • /
    • 2020
  • In this paper, we propose an optimal deep learning network architecture for main object location detection through weak supervised learning. The proposed network adds convolution blocks for improving the localization accuracy of the main object through weakly-supervised learning. The additional deep learning network consists of five additional blocks that add a composite product layer based on VGG-16. And the proposed network was trained by the method of weakly-supervised learning that does not require real location information for objects. In addition, Grad-CAM to compensate for the weakness of GAP in CAM, which is one of weak supervised learning methods, was used. The proposed network was tested through the CUB-200-2011 data set, we could obtain 50.13% in top-1 localization error. Also, the proposed network shows higher accuracy in detecting the main object than the existing method.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

Comparison of Edge Localization Performance of Moment-Based Operators Using Target Image Data

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2016
  • This paper presents a method to evaluate the performance of subpixel localization operators using target image data. Subpixel localization of edges is important to extract the precise shape of objects from images. In this study, each target image was designed to provide reference lines and edges to which the localization operators can be applied. We selected two types of moment-based operators: Gray-level Moment (GM) operator and Spatial Moment (SM) operator for comparison. The original edge localization operators with kernel size 5 are tested and their extended versions with kernel size 7 are also tested. Target images were collected with varying Camera-to-Object Distance (COD). From the target images, reference lines are estimated and edge profiles along the estimated reference lines are accumulated. Then, evaluation of the performance of edge localization operators was performed by comparing the locations calculated by each operator and by superimposing them on edge profiles. Also, enhancement of edge localization by increasing the kernel size was also quantified. The experimental result shows that the SM operator whose kernel size is 7 provides higher accuracy than other operators implemented in this study.

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

Grid-Based Localization of a Mobile Robot Using Sonar Sensors

  • Lim, Jong-Hwan;Kang, Chul-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.302-309
    • /
    • 2002
  • This paper presents a technique for localization of a mobile robot using sonar sensors. Localization is the continual provision of knowledges of position that are deduced from its a priori position estimation. The environment of a robot is modeled by a two-dimensional grid map. We define a physically based sonar sensor model and employ an extended Kalman filter to estimate positions of the robot. Since the approach does not rely on an exact geometric model of an object, it is very simple and offers sufficient generality such that integration with concurrent mapping and localizing can be achieved without major modifications. The performance and simplicity of the approach are demonstrated with the results produced by sets of experiments using a mobile robot equipped with sonar sensors.

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Probabilistic Object Recognition in a Sequence of 3D Images (연속된 3차원 영상에서의 통계적 물체인식)

  • Jang Dae-Sik;Rhee Yang-Won;Sheng Guo-Rui
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.241-248
    • /
    • 2006
  • The recognition of a relatively big and rarely movable object. such as refrigerator and air conditioner, etc. is necessary because these objects can be crucial global stable features of Simultaneous Localization and Map building(SLAM) in the indoor environment. In this paper. we propose a novel method to recognize these big objects using a sequence of 3D scenes. The particles representing an object to be recognized are scattered to the environment and then the probability of each particles is calculated by the matching test with 3D lines of the environment. Based on the probability and degree of convergence of particles, we can recognize the object in the environment and the pose of object is also estimated. The experimental results show the feasibility of incremental object recognition based on particle filtering and the application to SLAM

  • PDF

A Study on the RFID Tag-Floor Based Navigation (RFID 태그플로어 방식의 내비게이션에 관한 연구)

  • Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.968-974
    • /
    • 2006
  • We are moving into the era of ubiquitous computing. Ubiquitous Sensor Network (USN) is a base of such computing paradigm, where recognizing the identification and the position of objects is important. For the object identification, RFID tags are commonly used. For the object positioning, use of sensors such as laser and ultrasonic scanners is popular. Recently, there have been a few attempts to apply RFID technology in robot localization by replacing the sensors with RFID readers to achieve simpler and unified USN settings. However, RFID does not provide enough sensing accuracy for some USN applications such as robot navigation, mainly because of its inaccuracy in distance measurements. In this paper, we describe our approach on achieving accurate navigation using RFID. We solely rely on RFID mechanism for the localization by providing coordinate information through RFID tag installed floors. With the accurate positional information stored in the RFID tag, we complement coordinate errors accumulated during the wheel based robot navigation. We especially focus on how to distribute RFID tags (tag pattern) and how many to place (tag granularity) on the RFID tag-floor. To determine efficient tag granularities and tag patterns, we developed a simulation program. We define the error in navigation and use it to compare the effectiveness of the navigation. We analyze the simulation results to determine the efficient granularities and tag arrangement patterns that can improve the effectiveness of RFID navigation in general.