In this work, the new algorithm that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method. As the result of an application in sequential images, it is available to extract a moving object.
When we see an object, we usually can say what it is easily even for the case where the object isn't shown in the frontal view. However, it is difficult to believe that all views of every object we have ever seen are fully memorized in our brain. Possibly, when an object is shown, we have some typical views of the object in our brain through our past experience and reconstruct the view to recognize what the presented object is. Non-negative Matrix Factorization (NMF) is one of the methods to extract the basis images from sample data set. The prominent feature of this method is that the reconstructed image is obtained by only additions of the basis images with suitable positive weights. So NMF can be seen more biologically plausible method than any other feature extraction methods such as Vector Quantization (VQ) and principal Component Analysis (PCA). In this paper, we adopt NMF to extract the aspect features from the set of images, which consists of various views of a given object. Some experiments are shown how much well NMF can extract the aspect features than any other methods such as VQ and PCA.
This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.
무인 운반설비의 자동화 시스템 개발의 한 부분으로써 여러 Vision 센서 중 레이저 센서를 이용하여 작업 공간상에 있는 판재류와 코일류의 경계부분을 인식한다. 다음으로 인식한 물체의 경계를 이용하여 3차원 공간상의 위치 좌표를 추출하여 무인크레인에 이동해야할 위치 좌표를 전달한다. 본 연구에서는, 첫 번째 레이저 센서를 이용한 물체의 경계 추출, 두 번째 레이저 센서의 z축 기울기 각 추출, 세 번째 인식한 경계를 이용하여 물체의 2차원 위치좌표 추출, 네 번째 레이저 센서를 이용하여 판재와 코일의 판별, 다섯 번째 물체 판별의 결과에 따른 판재 와 코일의 3차원 위치좌표 추출을 목적으로 한다. 본 연구의 결과는 무인 운반설비의 자동화 시스템 개발에 상당한 도움이 될 것으로 기대된다.
의미있는 객체를 배경과 분리하는 영상분할기법은 침입자 경보 시스템, 교통 감시 시스템 등에서 중요한 역할을 담당하며, 일반적으로 공간적 동질성이나 시간적 정보를 이용하는 방법으로 나눌 수 있다. 시간적 정보를 이용하는 방법은 프레임간의 화소값이나 에지성분을 이용한다. 화소값 이용은 간단하며 효과적이나 조명 변화 등이 발생할 경우 움직임 검출이 어렵고 에지성분의 이용은 조명의 영향을 받지 않지만 복잡하며 잡음처리에 어려운 점이 있다. 따라서 본 논문은 카메라가 고정된 감시 시스템에서 화소값 비교와 에지 정보를 이용하여 조명등의 영향을 최소화하는 움직임 객체 추출 방법을 제안한다. 이는 조명변화와 배경영상의 존재여부에 따라 세 가지 움직임 객체 추출 방법을 달리 적용하며, 투영과 형태 처리 연산자를 사용하는 후처리과정을 거친 후 움직임 객체를 추출한다. 모의실험 결과 제안알고리즘은 조명변화가 발생하더라도 객체 추출의 결과가 우수함을 보이고 있다.
본 논문에서는 칼라 영상으로부터 관심 객체를 효과적으로 추출할 수 있는 방법을 제안한다. 본 논문에서 제안한 방법은 추출할 객체에 대한사전 지식이 필요 없으며 단순한 배경뿐만 아니라 복잡한 배경에서도 영상에 포함된 관심 객체를 추출하는 것이 가능하도록 한다. 이를 위해 가버 필터 사전을 사용하여 객체의 대략적인 형상을 포함하는 가버 영상을 생성한다. 이를 기반으로 객체 추출에 필요한 특징 정보의 추출 기준이 되는 관심 창(attention window)의 초기 위치를 설정한다. 객체 추출 단계는 기존 연구에서 제안한 방법을 일부 수정하여 적용한다. 제안된 방법의 추출 성능을 평가하기 위해 제안된 방법으로 추출된 결과를 수작업으로 추출된 객체와 비교하여 Precision, Recall 및 F-measure를 계산한다. 이를 통해 제안된 방법의 성능을 확인하였다. 또한 기존 방법과의 추출 결과 비교를 통해 제안된 방법의 우수성을 검증하였다.
Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.
본 논문은 고정영역에서 움직이는 객체를 검출하기 위한 방법으로 배경영상과 입력영상의 차를 이용하여 객체를 추출하고 추출된 객체의 이동을 추적하는 방법에 대해 제안하였다. 객체를 추출하는 방법으로 고정영역에 새로운 객체의 위치를 파악하기 위해 전체 영상의 픽셀을 연산에 참여시키는 것이 아니라 영상의 테두리에 설정된 영역의 픽셀들만을 연산에 참여시킨다. 따라서 중앙영역이 연산에서 제외되어 객체추출의 시간을 효과적으로 단축시킬 수 있었다. 또한 설정영역에서 객체를 추출하기 위하여 시작위치를 먼저 파악하고 시작위치로부터 객체의 가로와 세로의 크기를 추출함으로써 객체의 영역을 검출하였다. 이동된 객체의 추적에는 추출된 중심좌표를 이용하였다.
본 논문에서는 해양환경에서 취득한 열상 영상에서 물표를 강건하게 탐지하고 추적하는 알고리즘을 제안한다. 먼저 2-D 이산 Harr 웨이블렛 변환(DHWT) 기법을 이용하여 수평, 수직에지를 얻은 다음 수직 및 수평 에지들을 서로 곱하여 하나의 영상으로 결합해 돌출지도를 생성한다. 그런 다음 돌출지도를 이진화하여 물표를 추출한다. 물표를 추적하기 위하여 인접한 프레임에 존재하는 물체간의 가중치가 부여된 유클리디언 거리를 정합척도로 사용하였으며, 정합결과에 대해 물체의 나타남, 사라짐, 잘못된 물체 추출 등을 고려한 궤적관리를 통하여 최종적인 물체 궤적을 얻는다. 실험결과는 제안하는 알고리즘이 물체를 강건하게 추적함을 보인다.
본 연구에서는 배경과 구분되는 이동물체를 추적하기 위한 방법으로 부분 외곽선 정보를 이용한 이동물체 추적 알고리즘을 제안하였다. 이동물체의 추적은 이동물체의 외곽선을 검출한 다음 외곽선 정보를 이동물체의 특징으로 정하여 추적하는 알고리즘을 사용하였다. 먼저 이동물체 외곽선 정보를 이용하여 연속한 동영상 입력에 대하여 속 BMA(Block Matching Algorithm)을 이용하여 움직임 벡터를 추출하고 움직임 벡테를 기초로 이동물체를 추출한다. 다음은 이동물체 초기 특징 벡테 생성단계로서 이동물체에 대한 외곽선을 추출한다. 이동물체의 외곽선 영역 중 상하좌우의 외곽선 일부분을 특징벡터로 정한다. 다음은 추적단계로 이전 프레임에서 얻은 특징벡터를 이용하여 현재 프레임에서 이동물체의 추적을 수행하였다. 제안된 알고리즘에 대하여 실제영상을 가지고 이동물체추적 모의 실험을 수행한 결과 기존 능동 윤곽선 추적알고리즘은 물체 외곽선 전체를 추적하기 때문에 물체의 외곽선 길이에 따라 처리시간이 변화하지만 제안된 알고리즘은 이동물체의 외곽선 영역을 특징정보로 하여 추적하기 때문에 추적연산이 간단하였다. 제안된 이동물체 추적알고리즘 중 이동벡터를 추출하는 BMA 연산은 기존 알고리즘 보다 연산량이 약 39%감소였으며, 상하 좌우 외곽선 정보를 이용하여 이동물체를 추적한 결과 추적오차는 특징벡터의 크기가 [$10{\times}5$]일 때 검색오차가 2화소 이하로 양호하게 나타났다. 또한 기본 능동 윤ㅅ곽선 축적알고리즘은 물체 외곽선 크기에 따른 처리시간이 변화하지만 제안된 알고리즘은 특징벡터의 크기가 일정하기 때문에 동일한 처리시간이 필요하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.