• 제목/요약/키워드: Object Detection Deep Learning Model

검색결과 285건 처리시간 0.03초

배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘 (A Real-time People Counting Algorithm Using Background Modeling and CNN)

  • 양훈준;장혁;정재협;이보원;정동석
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.70-77
    • /
    • 2017
  • 최근 IoT 및 딥러닝 관련 기술요소들이 영상보안감시시스템에서도 다양하게 응용되고 있다. 그 중 CCTV를 통해 촬영된 동영상에서 자동으로 특정 객체를 검출, 추적, 분류 하는 감시 기능이 점점 지능화되고 있다. 본 논문에서는 보급형 CPU만 사용하는 PC 환경에서도 실시간 처리가 가능한 알고리즘을 목표로 하였다. GMM(Gaussian Mixture Model)을 이용한 배경 모델링과 헝가리안 알고리즘, 그리고 칼만 필터를 조합한 추적 알고리즘은 전통적이며 복잡도가 비교적 적지만 검출 오류가 높다. 이를 보강하기 위해 대용량 데이터 학습에 적합한 딥러닝을 기술을 적용하였다. 특히 움직임이 있는 사람의 특징을 강조하기 위해 추적된 객체에 대해 SRGB-3 Layer CNN을 사용하였다. 성능 평가를 위해 기존의 HOG와 SVM을 이용한 시스템과 비교했을 때 Move-in은 7.6%, Move-out은 9.0%의 오류율 감소가 있었다.

다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석 (Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets)

  • 이대건;신영하;이동천
    • 한국측량학회지
    • /
    • 제40권2호
    • /
    • pp.91-108
    • /
    • 2022
  • 대부분의 경우 광학 RGB 영상을 딥러닝(DL: Deep learning)의 학습 데이터로 사용하여 객체탐지, 인식, 식별, 분류, 의미적 분할 및 객체 분할 등을 수행하지만, 실세계의 3차원 객체들을 2차원 영상으로 완전하게 파악하는 것은 한계가 있다. 그러므로 대표적인 3차원 지형 공간정보인 수치표면모델(DSM: Digital Surface Model)과 더불어 DSM에 내재된 특성정보를 이용하여 3차원 지형지물을 분석하는 것이 효과적이다. 건물과 같이 기하학적으로 정형화된 형태의 인공구조물은 3차원 공간데이터로부터 얻을 수 있는 기하학적 요소와 특성을 이용하여 객체의 분류와 형상 묘사가 가능하다. 이 연구는 고차원 시각정보(high-level visual information) 시스템에서 중요한 역할을 하는 내재된 고유의 특성정보(intrinsic information)를 기반으로 하며, 이를 위하여 객체의 기하학적 요소인 경사와 주향을 DSM으로부터 도출하고, 다방향에서 생성한 음영기복영상(SRI: Shaded Relief Image)과 함께 DL 모델의 학습 수행에 사용하였다. 실험은 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 데이터 셋 중에서 DSM과 레이블 데이터를 객체의 의미적 분류를 위해 개발된 합성곱 기반의 SegNet 학습에 사용하였다. 지형지물을 분류하고 분류 결과를 이용하여 건물을 추출하였다. 특히 DL 모델의 학습 성능 향상을 위해 학습 데이터의 여러 조합에 따른 시너지 효과를 분석하는 것에 핵심이다. 제안한 방법은 건물 분류와 추출에 효과적임을 보여주고 있다.

다양한 환경에 강건한 RGB 영상 기반 보행 분석 (Robust RGB image-based gait analysis in various environment)

  • 안지민;정겨운;신동인;원건;박종범
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.441-443
    • /
    • 2018
  • 본 논문은 RGB 영상 이용하여 하지 움직임에 대한 분석을 다룬다. 딥러닝 접근방법인 객체 인식 Segmentation 알고리즘과 자세 검출 알고리즘을 융합한 방법과 BMC(Background Model Challenge)을 활용하여 RGB 영상을 보행 분석 요소로 사용하였다. 본 연구에서 제시한 영상 보행 분석은 보행패턴 인식과 비정상적인 보행 등의 분류를 위한 변수로서 활용할 수 있을 것으로 판단된다.

  • PDF

객체 중심 증강 기법을 사용한 목조 문화재 영상에서의 변위 감지 모델 (An Displacement Detection Model in Cultural Asset Images using Object-centric Augmentation)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.137-139
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위를 효율적으로 감지하기 위한 객체 중심 증강 기법을 사용한 모델을 제안한다. 우선 객체 중심 증강 기법을 적용하여 변위 객체들이 이미지 공간상의 어느 곳이든 위치할 수 있게끔 데이터를 구성한 이후 사전 학습된 합성 곱 신경망을 사용하여 입력 이미지에 대한 심층 특징 벡터를 추출한다. 그 이후 심층 특징 벡터는 완전 연결 계층의 입력 값으로 들어와서 최종적으로 변위가 존재하는지 아닌지에 대한 예측을 수행하게 된다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 객체 중심 증강 기법을 사용한 모델이 객체 중심 증강 기법을 사용하지 않은 모델보다 목조 문화재에서 변위 영역을 더 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 변위 검출에 있어서 매우 적합함을 보여준다.

  • PDF

인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구 (Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices)

  • 위리;김남호
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.9-17
    • /
    • 2024
  • 본 연구는 농산물의 품질, 수익 및 의사결정 효율성을 향상시키기 위한 통합적인 농업 유통망 관리시스템을 개발하는 데 목적이 있다. 우리는 YOLOX 객체 탐지 알고리즘을 기반으로 한 농작물 성숙도 체크와 Prophet 모델을 기반으로 한 시장 가격 예측이라는 두 가지 핵심 기술을 채택하였다. 객체 탐지 모델을 훈련함으로써, 다양한 성숙도 단계의 농작물을 정확하게 식별할 수 있게 되어 출하 시기를 최적화할 수 있었다. 동시에, 과거 시장 가격 데이터를 수집하고 Prophet 모델을 사용하여 가격을 예측함으로써, 출하시기 결정권자들에게 신뢰할 수 있는 가격 추세 정보를 제공하였다. 연구 결과에 따르면, 휴일 요소를 고려한 모델의 성능이 그렇지 않은 모델보다 두드러지게 우수하다는 것이 밝혀져서 휴일이 가격에 미치는 영향이 강함을 증명하였다. 이 시스템은 농민 및 농산물 유통 관리자에게 강력한 도구 및 의사결정 지원을 제공하여, 다양한 계절과 휴일 기간 동안 현명한 의사결정을 내릴 수 있게 도와준다. 아울러, 농산물 유통망을 최적화하고 농산물의 품질과 수익을 향상시킬 수 있다.

가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안 (Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System)

  • 이승주;박구만
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.776-788
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.

RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법 (A Method for Body Keypoint Localization based on Object Detection using the RGB-D information)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.85-92
    • /
    • 2017
  • 최근 영상감시 분야에서는 영상에서 움직이는 사람을 탐지하고, 탐지된 사람의 행위를 분석하는 방식에 딥러닝 기반 학습방법이 적용되기 시작했다. 이러한 지능형 영상분석 기술을 적용할 수 있는 분야 중 하나인 인간 행위 인식은 객체를 탐지하고 탐지된 객체의 행위를 인식하기 위해 신체 키포인트를 검출 하는 과정을 거치게 된다. 본 논문에서는 RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법을 제시한다. 먼저, 두 대의 카메라로 생성된 색상정보와 깊이정보를 이용하여 이동하는 객체를 배경으로부터 분할하여 탐지한다. RGB-D 정보를 이용하여 탐지된 객체의 영역을 재조정하여 생성된 입력 데이터를 한 사람의 자세 추정을 위한 Convolutional Pose Machines(CPM)에 적용한다. CPM을 이용하여 한 사람당 14개의 신체부위에 대한 신념 지도(Belief Map)를 생성하고, 신념 지도를 기반으로 신체 키포인트를 검출한다. 이와 같은 방법은 키포인트를 검출할 객체에 대한 정확한 영역을 제공하게 되며, 개별적인 신체 키포인트의 검출을 통하여 단일 신체 키포인트 검출에서 다중 신체 키포인트 검출로 확장 할 수 있다. 향후, 검출된 키포인트를 이용하여 인간 자세 추정을 위한 모델을 생성할 수 있으며 인간 행위 인식 분야에 기여 할 수 있다.

Deep Learning for Herbal Medicine Image Recognition: Case Study on Four-herb Product

  • Shin, Kyungseop;Lee, Taegyeom;Kim, Jinseong;Jun, Jaesung;Kim, Kyeong-Geun;Kim, Dongyeon;Kim, Dongwoo;Kim, Se Hee;Lee, Eun Jun;Hyun, Okpyung;Leem, Kang-Hyun;Kim, Wonnam
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.87-87
    • /
    • 2019
  • The consumption of herbal medicine and related products (herbal products) have increased in South Korea. At the same time the quality, safety, and efficacy of herbal products is being raised. Currently, the herbal products are standardized and controlled according to the requirements of the Korean Pharmacopoeia, the National Institute of Health and the Ministry of Public Health and Social Affairs. The validation of herbal products and their medicinal component is important, since many of these herbal products are composed of two or more medicinal plants. However, there are no tools to support the validation process. Interest in deep learning has exploded over the past decade, for herbal medicine using algorithms to achieve herb recognition, symptom related target prediction, and drug repositioning have been reported. In this study, individual images of four herbs (Panax ginseng C.A. Meyer, Atractylodes macrocephala Koidz, Poria cocos Wolf, Glycyrrhiza uralensis Fischer), actually sold in the market, were achieved. Certain image preprocessing steps such as noise reduction and resize were formatted. After the features are optimized, we applied GoogLeNet_Inception v4 model for herb image recognition. Experimental results show that our method achieved test accuracy of 95%. However, there are two limitations in the current study. Firstly, due to the relatively small data collection (100 images), the training loss is much lower than validation loss which possess overfitting problem. Secondly, herbal products are mostly in a mixture, the applied method cannot be reliable to detect a single herb from a mixture. Thus, further large data collection and improved object detection is needed for better classification.

  • PDF

딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지 (Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images)

  • 서영민;윤유정;김서연;강종구;정예민;최소연;임윤교;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1413-1425
    • /
    • 2023
  • 기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.

멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출 (Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN)

  • 신현식;김형원;홍상욱
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.367-373
    • /
    • 2022
  • 딥러닝 기반 자율 주행 기술이 발전함에 따라 다양한 목적의 인공지능 모델이 연구되었다. 연구된 여러 모델들을 동시에 구동하여 자율주행 시스템을 개발한다. 그러나 동시에 인공지능 모델을 사용하면서 많은 하드웨어 자원 소비가 증가한다. 이를 해결하기 위해 본 논문은 백본 모델을 공유하며 다중 태스크를 고속으로 수행할 수 있는 Multi-Task CNN 모델을 제안한다. 이를 통해 AI모델을 사용하기 위한 백본 수의 증가를 해결할 수 있었습니다. 제안하는 CNN 모델은 기존 모델 대비 50% 이상 웨이트 파라미터 수를 감소시키며, 3배 이상의 FPS 속도를 향상시켰다. 또한, 차선인식은 Instance segmentation 기반으로 차선검출 및 차선별 Labeling을 모두 출력한다. 그러나 기존 모델에 비해 정확도가 감소하는 부분에 대해서는 추가적인 연구가 필요하다.