• 제목/요약/키워드: Object Detection Deep Learning Model

검색결과 285건 처리시간 0.029초

객체 검출 알고리즘을 활용한 딥러닝 기반 상완 신경총 초음파 영상의 분할에 관한 연구 (Deep Learning based Brachial Plexus Ultrasound Images Segmentation by Leveraging an Object Detection Algorithm)

  • 조국현;류현승;이명진;박수형
    • 한국방사선학회논문지
    • /
    • 제18권5호
    • /
    • pp.557-566
    • /
    • 2024
  • 초음파 유도 국소마취는 통증 관리와 회복 시간을 개선하여 말초신경 차단에 널리 사용되는 기법이다. 하지만 능숙한 임상의들에게도 초음파 영상에서 나타나는 speckle 및 Doppler와 같은 영상에 내재되어 있는 artifacts로 인하여 상완 신경총(BP; Brachial Plexus)의 정확한 검출 및 식별이 여전히 난제로 남아있다. 이 문제를 해결하기 위해, 우리는 다중 스케일의 접근법을 기반으로 하는 BP의 객체 검출과 그 결과로부터 U-Net 기반의 의미론적 영상 분할을 수행하는 small target 기반의 BP segmentation 알고리즘을 제안한다. 이를 위해 현재 BP 검출 및 식별은 다음과 같이 진행되었다: 1) 다중 스케일 기반의 RetinaNet 모델을 활용하여 BP 신경 영역을 대략적으로 특정하는 단계와 2) 객체 검출로부터 제한된 영상의 범위를 입력으로 U-Net을 활용함으로서 BP 신경의 영역을 검출하는 단계. 실험 결과는 제안된 모델이 분할 전용 모델 등의 경쟁 방법에 비해 BP 신경 영역을 대략적으로 특정하여 식별 범위를 제한함으로서 BP 신경 범위 분할의 정확도를 높이고 고품질 BP 분할을 생성할 수 있음을 보여준다.

항공 영상에서의 Mask R-CNN을 이용한 차량 검출 연구 (A Study on Car Detection in Road Surface Using Mask R-CNN in Aerial Image)

  • 윤형진;이민혜;정유석;이혜성;조정원;이창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.71-73
    • /
    • 2019
  • 차량이 얼마나 존재하고 어디에 존재하는지는 교통정보를 반영하는 GeoAI 기반 도시 환경의 구현에서 필수적으로 파악되어야 할 요소이다. 본 논문에서는 객체 검출 및 추출에 유용한 딥러닝 모델인 Mask R-CNN을 이용하여 차량 데이터를 학습시키고 드론으로 촬영한 실제 항공 영상에서 차량 검출 유무를 검증하였다.

  • PDF

증강현실 게임에서 딥러닝을 활용한 배경객체 분석에 관한 연구 (A Study on the Analysis of Background Object Using Deep Learning in Augmented Reality Game)

  • 김한호;이동열
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.38-43
    • /
    • 2021
  • 증강현실기술을 사용하는 증강현실 게임이 늘어남에 따라 사용자들의 요구도 많아지고 있다. 증강현실 게임에서 사용되는 게임 기술에는 MARKER, MARKERLESS, GPS등을 활용한 게임이 주를 이루고 있다. 이러한 기술을 활용한 게임은 배경과 다른 오브젝트를 증강할 수가 있다. 이 문제를 해결하기 위해 증강현실의 중요한 요소인 배경에서 객체를 분석하여 증강현실 게임을 개발하는데 도움을 주고자 한다. 증강현실 게임에서 배경을 분석하기 위해 UNITY엔진에서 TensorFlow Lite를 활용하여 딥러닝 모델을 적용하여 배경 객체를 분석하였다. 이 결과를 활용하여 배경에서 분석된 객체의 종류에 맞춰 게임에 증강되는 오브젝트를 배치 할 수 있다는 결과를 얻었다. 이 연구를 활용하여 배경에 맞는 오브젝트를 증강하여 향상된 증강현실 게임을 개발 할 수 있을 것이다.

딥러닝 효율화를 위한 다중 객체 데이터 분할 학습 기법 (A Study on Multi-Object Data Split Technique for Deep Learning Model Efficiency)

  • 나종호;공준호;신휴성;윤일동
    • 터널과지하공간
    • /
    • 제34권3호
    • /
    • pp.218-230
    • /
    • 2024
  • 최근 건설현장의 안전사고 문제를 해결하기 위해 컴퓨터 비전 기술을 활용한 안전관리에 관한 연구를 많이 수행하고 있다. 최근 딥러닝 기반 객체 인식 및 영역 분할 연구에서 앵커 박스 파라미터를 사용하고 있다. 일관적인 정확도를 확보하기 위하여 학습 과정에서 앵커 박스 파라미터의 최적화가 중요하다. 앵커 박스 관련 파라미터는 일반적으로 학습자의 휴리스틱 방법으로 모양과 크기를 고정하여 학습을 수행하고 있고, 파라미터는 단일로 구성된다. 하지만 파라미터는 객체 종류와 객체 크기에 따라 민감하고 수가 증가하면 단일 파라미터로 데이터의 모든 특성을 반영하는데 한계가 발생한다. 따라서 본 논문은 분할 학습을 통해 최적화된 다중 파라미터를 적용하는 방법을 제안하여 단일 파라미터로 모든 객체의 특성을 반영하기 어려운 문제를 해결하고자 한다. 통합 데이터를 객체 크기, 객체 수, 객체의 형상에 따라 효율적으로 분할하는 기준을 정립하였으며, 최종으로 통합 학습과 분할 학습 방법의 성능 비교를 통해 제안한 학습 방법의 효과를 검증하였다.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

Deep Learning in Radiation Oncology

  • Cheon, Wonjoong;Kim, Haksoo;Kim, Jinsung
    • 한국의학물리학회지:의학물리
    • /
    • 제31권3호
    • /
    • pp.111-123
    • /
    • 2020
  • Deep learning (DL) is a subset of machine learning and artificial intelligence that has a deep neural network with a structure similar to the human neural system and has been trained using big data. DL narrows the gap between data acquisition and meaningful interpretation without explicit programming. It has so far outperformed most classification and regression methods and can automatically learn data representations for specific tasks. The application areas of DL in radiation oncology include classification, semantic segmentation, object detection, image translation and generation, and image captioning. This article tries to understand what is the potential role of DL and what can be more achieved by utilizing it in radiation oncology. With the advances in DL, various studies contributing to the development of radiation oncology were investigated comprehensively. In this article, the radiation treatment process was divided into six consecutive stages as follows: patient assessment, simulation, target and organs-at-risk segmentation, treatment planning, quality assurance, and beam delivery in terms of workflow. Studies using DL were classified and organized according to each radiation treatment process. State-of-the-art studies were identified, and the clinical utilities of those researches were examined. The DL model could provide faster and more accurate solutions to problems faced by oncologists. While the effect of a data-driven approach on improving the quality of care for cancer patients is evidently clear, implementing these methods will require cultural changes at both the professional and institutional levels. We believe this paper will serve as a guide for both clinicians and medical physicists on issues that need to be addressed in time.

로봇 팔을 활용한 정리작업을 위한 물체 자세추정 및 이미지 매칭 (Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm)

  • 박정란;조현준;송재복
    • 로봇학회논문지
    • /
    • 제16권4호
    • /
    • pp.299-305
    • /
    • 2021
  • In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.

딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가 (A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications)

  • 박수호;장선웅;김흥민;김탁영;예건희
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.193-205
    • /
    • 2023
  • 집중강우 시 육상으로부터 다량으로 유입된 부유쓰레기는 사회, 경제적 및 환경적으로 부정적인 영향을 주고 있으나 부유쓰레기 집적 구간 및 발생량에 대한 모니터링 체계는 미흡한 실정이다. 최근 인공지능 기술의 발달로 드론 영상과 딥러닝 기반 객체탐지 모델을 활용하여 수계 내 광범위한 지역을 신속하고 효율적인 연구의 필요성이 요구되고 있다. 본 연구에서는 육상기인 부유쓰레기의 효율적인 탐지 기법을 제시하기 위해 드론 영상뿐만 아니라 다양한 이미지를 확보하여 You Only Look Once (YOLO)v5s와 최근에 개발된 YOLO7 및 YOLOv8s로 학습하여 모델별로 성능을 비교하였다. 각 모델의 정성적인 성능 평가 결과, 세 모델 모두 일반적인 상황에서 탐지성능이 우수한 것으로 나타났으나, 이미지의 노출이 심하거나 수면의 태양광 반사가 심한 경우 YOLOv8s 모델에서 대상물을 누락 또는 중복 탐지하는 사례가 나타났다. 정량적인 성능 평가 결과, YOLOv7의 mean Average Precision (intersection over union, IoU 0.5)이 0.940으로 YOLOv5s (0.922)와 YOLOvs8(0.922)보다 좋은 성능을 나타냈다. 데이터 품질에 따른 모델의 성능 비교하기 위해 색상 및 고주파 성분에 왜곡을 발생시킨 결과, YOLOv8s 모델의 성능 저하가 가장 뚜렷하게 나타났으며, YOLOv7 모델이 가장 낮은 성능 저하 폭을 보였다. 이를 통해 수면 위에 존재하는 부유쓰레기 탐지에 있어서 YOLOv7 모델이 YOLOv5s와 YOLOv8s 모델에 비해 강인한 모델임을 확인하였다. 본 연구에서 제안하는 딥러닝 기반 부유쓰레기 탐지 기법은 부유쓰레기의 성상별 분포 현황을 공간적으로 파악할 수 있어 향후 정화작업 계획수립에 기여할 수 있을 것으로 판단된다.

승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증 (Validation of Semantic Segmentation Dataset for Autonomous Driving)

  • 곽석우;나호용;김경수;송은지;정세영;이계원;정지현;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

Sign Language Translation Using Deep Convolutional Neural Networks

  • Abiyev, Rahib H.;Arslan, Murat;Idoko, John Bush
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.631-653
    • /
    • 2020
  • Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.