• 제목/요약/키워드: Object Detection Deep Learning Model

검색결과 285건 처리시간 0.029초

Tillage boundary detection based on RGB imagery classification for an autonomous tractor

  • Kim, Gookhwan;Seo, Dasom;Kim, Kyoung-Chul;Hong, Youngki;Lee, Meonghun;Lee, Siyoung;Kim, Hyunjong;Ryu, Hee-Seok;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.205-217
    • /
    • 2020
  • In this study, a deep learning-based tillage boundary detection method for autonomous tillage by a tractor was developed, which consisted of image cropping, object classification, area segmentation, and boundary detection methods. Full HD (1920 × 1080) images were obtained using a RGB camera installed on the hood of a tractor and were cropped to 112 × 112 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the path boundary was detected using a probability map, which was generated by the integration of softmax outputs. The results show that the F1-score of the classification was approximately 0.91, and it had a similar performance as the deep learning-based classification task in the agriculture field. The path boundary was determined with edge detection and the Hough transform, and it was compared to the actual path boundary. The average lateral error was approximately 11.4 cm, and the average angle error was approximately 8.9°. The proposed technique can perform as well as other approaches; however, it only needs low cost memory to execute the process unlike other deep learning-based approaches. It is possible that an autonomous farm robot can be easily developed with this proposed technique using a simple hardware configuration.

객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발 (An Overloaded Vehicle Identifying System based on Object Detection Model)

  • 정우진;박용주;박진욱;김창일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.562-565
    • /
    • 2022
  • 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.

  • PDF

딥러닝을 이용한 달 크레이터 탐지 (Lunar Crater Detection using Deep-Learning)

  • 서행자;김동영;박상민;최명진
    • 우주기술과 응용
    • /
    • 제1권1호
    • /
    • pp.49-63
    • /
    • 2021
  • 태양계 천체 탐사는 다양한 탑재체를 통해 이루어지고 있고, 그에 따라 많은 연구 결과들이 나오고 있다. 우리는 태양계 천체 연구의 한 방법으로 딥러닝 적용을 시도해 보았다. 지구 관측 위성 자료와 다르게 태양계 천체 자료들은 천체들에 따라 탐사선에 따라 각 탐사선의 탑재체에 따라 그 자료의 형태가 매우 다르다. 그래서 학습시킨 모델로 다양한 자료에 적용이 어려울 수 있지만 사람에 의한 오류를 줄이거나, 놓치는 부분들을 보완해 줄 수 있을 것이라고 기대한다. 우리는 달 표면의 크레이터를 탐지하는 모델을 구현해 보았다. Lunar Reconnaissance Orbiter Camera (LROC) 영상과 제공하는 shapefile을 입력값으로 하여 모델을 만들었고, 이를 달 표면 영상에 적용하여 보았다. 결과가 만족스럽지는 못했지만 이후 이미지 전처리와 모델 수정 작업을 통해 최종적으로는 ShadowCam에 의해 획득되는 달의 영구음영지역 영상에 적용할 예정이다. 이 외에도 달 표면과 비슷한 형태를 가진 세레스와 수성에 적용을 시도하여 딥러닝이 태양계 천체 연구에 또 다른 방법임을 시사하고자 한다.

블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축 (Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems)

  • 장지원;안효준;이종한;신수봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.80-86
    • /
    • 2019
  • 컴퓨터 성능 향상으로 다양한 분야에서 딥러닝을 활용한 연구가 활발히 진행되고 있으며 최근에는 구조물 안전성 평가 연구에도 그 적용이 이루어지고 있다. 특히 터빈의 내부 블레이드는 분리가 쉽지 않고 어두운 주변 환경으로 인해 블레이드의 표면 결함 검출은 전문 인력의 경험에 의존하고 있으며, 점검시간도 상당히 소요되고 있는 실정이다. 따라서, 본 연구에서는 딥러닝 기술을 적용하여 터빈 구조의 부재 중 하나인 내부 블레이드에 발생하는 결함을 검출할 수 있는 효율적인 방법을 제시하였다. Faster R-CNN 인공신경망 기법을 활용하여 결함의 이미지 데이터를 학습하였고 부족한 이미지는 필터링과 Image Data Generator를 이용하여 데이터를 확장하였다. 그 결과 블레이드의 결함을 학습한 딥러닝 모델은 평균적으로 약 96.1%의 정확도와 재현율은 95.3%, 정밀도는 96%의 성능을 보였다. 재현율을 통해 제시된 딥러닝 모델이 결함을 탐지하지 못하는 경우는 4.7% 로 나타났다. 재현율의 성능은 여러 환경의 많은 결함 이미지 데이터를 수집하고 확장하여 딥러닝 학습에 적용함으로써 더욱 향상되리라 판단된다. 이러한 실제 블레이드의 결함 이미지 데이터 확보와 학습을 통해 향후 터빈엔진 정비에 적용 가능한 결함 검출 시스템으로 발전할 수 있을 것이다.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

카메라 기반 객체의 위치인식을 위한 왜곡제거 및 오검출 필터링 기법 (Distortion Removal and False Positive Filtering for Camera-based Object Position Estimation)

  • 진실;송지민;최지호;진용식;정재진;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.

3D Object Detection via Multi-Scale Feature Knowledge Distillation

  • Se-Gwon Cheon;Hyuk-Jin Shin;Seung-Hwan Bae
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권10호
    • /
    • pp.35-45
    • /
    • 2024
  • 본 연구에서는 모델의 경량화를 위해 교사 모델의 출력 특징맵에서 3D 객체의 정보를 추출해 학생 모델의 다중 스케일 특징맵(Multi-scale feature map)에 맞게 증류하는 3D 객체 검출용 다중스케일 특징 지식 증류 기법인 M3KD (Multi-Scale Feature Knowledge Distillation for 3D Object Detection)를 제안한다. M3KD는 지식 증류 수행 시 학생 모델과 교사 모델의 다중 스케일 특징맵들 간 L2 손실(loss)을 사용해 특징맵 값의 차이를 줄이게 함으로써 학생 모델이 교사 모델의 백본을 모방하게 하여 학생 모델의 전체적인 정확도를 향상시키고, 기존의 이미지 분류 태스크(Task)에서 사용하는 클래스 로짓(Logits) 지식 증류를 적용해 교사 모델의 클래스 분류 로짓을 모방함으로써 학생 모델의 검출 정확도를 향상시킨다. 본 연구가 제안한 M3KD의 효과를 증명하기 위해 KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) 데이터 셋에서 실험을 진행하였으며, 이때 학습한 학생 모델이 교사 모델 대비 30%의 추론 속도 향상을 달성하였다. 또한, 정확도에서 기존의 학생 모델과 비교시 모든 클래스 및 모든 난이도에서 평균적으로 1.08%의 3D mAP (Mean Average Precision) 향상이 있음을 확인하였다. 또한 최신 지식 증류 기법인 PKD, SemCKD에 제안하는 기법을 추가로 적용하였을 시 기존 대비 0.42%, 0.52% 높은 정확도 (3D mAP)를 나타내 성능 향상을 달성하였다.

YOLOv4를 이용한 차량파손 검출 모델 개선 (Improving the Vehicle Damage Detection Model using YOLOv4)

  • 전종원;이효섭;한희일
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.750-755
    • /
    • 2021
  • 본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.

유치의 치근단 방사선 사진에서 딥 러닝 알고리즘을 이용한 모델의 인접면 우식증 객체 탐지 능력의 평가 (Assessment of the Object Detection Ability of Interproximal Caries on Primary Teeth in Periapical Radiographs Using Deep Learning Algorithms)

  • 전홍주;김선미;최남기
    • 대한소아치과학회지
    • /
    • 제50권3호
    • /
    • pp.263-276
    • /
    • 2023
  • 이 연구의 목적은 소아의 치근단 방사선 사진에서 인접면 우식증 객체 탐지 의 객체 탐지를 위해 YOLO (You Only Look Once)를 사용한 모델의 성능을 평가하는 것이다. M6 데이터베이스에서 학습자료군으로 2016개의 치근단 방사선 사진이 선택되었고 이 중 1143개는 한 명의 숙련된 치과의사가 주석 도구를 사용하여 인접면 우식증을 표시하였다. 표시한 주석을 데이터 세트로 변환한 후 단일 합성곱 신경망(CNN) 모델을 기반으로 하는 YOLO를 데이터 세트에 학습시켰다. 187개의 평가자료군에서 객체 탐지 모델 성능 평가를 위해 정확도, 재현율, 특이도, 정밀도, NPV, F1-score, PR 곡선 및 AP를 계산하였다. 결과로 정확도 0.95, 재현율 0.94, 특이도 0.97, 정밀도 0.82, NPV 0.96, F1-score 0.81, AP 0.83으로 인접면 우식증 탐지에 좋은 성능을 보였다. 이 모델은 치과의사에게 치근단 방사선 사진에서 인접면 우식증 병변을 객체 탐지하는 도구로 유용하게 사용될 수 있다.