• 제목/요약/키워드: Obesity-induced inflammation

검색결과 127건 처리시간 0.034초

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • 한국동물생명공학회지
    • /
    • 제37권4호
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

삼황사심탕(三黃瀉心湯)이 수컷 생쥐의 비만(肥滿) 관련 대사질환(代謝疾患)에 미치는 영향 (Effects of Samhwangsasim-tang on obesity-related metabolic disease in mice)

  • 이주영;국윤범
    • 대한한의학방제학회지
    • /
    • 제22권1호
    • /
    • pp.93-104
    • /
    • 2014
  • Objectives : Samhwangsasim-tang (SHSST) is a traditional Korean medication, which has been used in Korea for treatment of hypertension and chest pain. Hyperlipidemia and inflammation could influence hypertension and chest pain. This study investigated whether and how SHSST reduces the hyperlipidemia and inflammation related to high-cholesterol diet-induced obesity in rats. Methods : Mice were divided randomly into four groups: the normal diet group, high-cholesterol diet group, low dose treatment group supplemented with 30% ethanol extract of SHSST (L) and high dose treatment group supplemented with 80% ethanol extract of SHSST (H). L and H groups were orally administered with SHSST at the dose of 50mg/kg a day respectively and others were administered with the same volume of physiological saline. Results : Administration of SHSST resulted in a decrease in serum levels of total cholesterol and low-density lipoprotein. Expression of hepatic genes(SREBP2, LXR, LDLR, and HMG-CoA) related with cholesterol metabolism was also suppressed. In addition, SHSST decreased the expression of inflammation-related gene (TNF-${\alpha}$, IL-6, ICAM-1, VCAM-1, TGF-${\beta}1$ and fibronectin). Histological examinations also showed that the size of the adipocytes was smaller in the SHSST treated group than in the high-colesterol diet group. In an in vitro study, SHSST inhibited the production of nitric oxide in a concentration-dependent manner. Conclusions : This study indicates that SHSST has anti-hyperlipidemia and anti-inflammatory effects. It may also suggest that SHSST may be alternative therapy for treatment of hyperlipidemia and its complications.

Ameliorative Effect of Pu-erh Tea on DSS-induced Colitis through Regulation of NF-κB Activation in Mice

  • Jeon, Yong-Deok;Kim, Su-Jin
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.248-254
    • /
    • 2021
  • Ulcerative colitis (UC), chronic inflammatory bowel disease, is characterized by severe inflammation in the colon. Tea is one of the most popular beverages consumed worldwide. Pu-erh tea, a unique Chinese tea produced by microbial activities, possesses a broad range of health-promoting effects, including anti-aging, anti-Alzheimer's disease, antioxidation and anti-obesity. However, the inhibitory effect of Pu-erh tea on intestinal inflammation and the underlying mechanism remain unclear. The present study was designed to evaluate the regulatory effect of Pu-erh tea extract (PTE) on dextran sulfate sodium (DSS)-induced colitis clinical signs by analyzing the weight loss and colon length in mice. The inhibitory effects of PTE on inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) were also determined in DSS-treated colitis tissue. We observed that PTE treatment significantly inhibited the DSS-induced clinical symptoms of weight loss, decrease,in colon length, and colon tissue damage in mice. Moreover, PTE attenuated the DSS-induced levels of IL-6 and TNF-α in colon tissue. We also demonstrated the anti-inflammatory mechanism of PTE by suppressing the activation of NF-κB in DSS-treated colon tissues. Collectively, the findings provide experimental evidence that PTE may be effective in preventing and treatment of intestinal inflammatory disorders, including UC.

흑양파를 이용하여 제조한 식초의 고지방식이 유도 C57BL/6 비만 동물모델에 미치는 효과 (Effects of black onion vinegar on high fat diet-induced obese C57BL/6 mice model)

  • 김미숙;백지윤;최예정;강기성;서원택;김지현;김현영
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.313-319
    • /
    • 2022
  • 비만의 원인이 되는 고지방식이 섭취는 체내에서 과다한 지질 축적 및 염증 반응을 유도한다. 본 연구에서 고지방식이로 비만이 유도된 C57BL/6 동물 모델에서 흑양파식초 섭취가 미치는 효과에 대해 알아보기 위해 흑양파즙 및 흑양파식초를 각각 6주간 투여하였다. 고지방식이를 유도한 HFD군은 정상 식이를 섭취한 NC군에 비해 체중 및 장기 무게가 증가하여 비만이 유도되었음을 확인하였다. 반면 흑양파식초를 투여한 HFD + BV군은 HFD군에 비해 체중 및 장기 무게를 유의적으로 감소시켰다. 또한 흑양파즙 및 흑양파식초를 각각 투여한 군은 HFD군에 비해 혈청 총 콜레스테롤 및 중성지질 수치를 개선시켰다. 뿐만 아니라, 흑양파식초 투여군은 HDL 콜레스테롤 및 LDL 콜레스테롤 수치를 유의적으로 개선시켜 고지방식이로 손상된 지질대사 개선 효과를 확인하였으며, 부고환 지방 및 간 조직에서 지방세포의 수와 크기를 감소시켰다. 흑양파식초의 비만개선 작용 기전을 확인하기위해 간 조직 내에서 adipogenesis 및 염증 관련 단백질 발현 측정 결과, 흑양파즙 및 흑양파식초 투여군은 HFD군에 비해 adipogenesis 및 염증 관련 인자를 감소시켰다. 특히 흑양파식초 투여는 흑양파즙 투여에 비해 지방생성에 관여하는 단백질 억제 효과가 더욱 우수하였다. 따라서 본 연구에서 흑양파식초 투여는 고지방식이로 비만이 유도된 동물모델에서 adipogenesis 관련 단백질 발현 억제를 통해 비만을 개선시킴을 알 수 있었으며, 항비만 기능성 식초로 활용 가능성이 있는 것으로 사료된다.

미나리 발효 식초의 지방세포 분화억제 및 항염증 효과 (Inhibitory Effects of Lyophilized Dropwort Vinegar Powder on Adipocyte Differentiation and Inflammation)

  • 박윤희;최준혁;황기;이승욱;양선아;유미희
    • 생명과학회지
    • /
    • 제24권5호
    • /
    • pp.476-484
    • /
    • 2014
  • 비만은 감염원 없이 진행되는 낮은 수준의 만성적인 전신성 염증상태로 간주되며, 만성대사질환의 원인이 된다. 본 연구에서는 미나리를 발효하여 만든 식초가 3T3-L1 지방전구세포의 분화 및 RAW 264.7 세포에서의 항염증 효과에 미치는 영향을 확인하였다. MDI (IBMX, dexamethasone, insulin)에 의해 분화가 유발된 3T3-L1 지방전구세포에 대한 미나리 식초의 분화 억제능을 Oil-red-O staining을 통해 확인하였으며, western blot법을 통해 지방세포 형성 시 중요한 전사인자인 peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$)와 CCAAT-enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$)의 발현을 감소시키는 것으로 나타났다. 또한, 미나리 식초가 lipopolysaccharide (LPS)에 의해 염증이 유발 된 RAW 264.7 세포의 nitric oxide (NO) 생성을 억제시켰으며, inducible NO synthase (iNOS)와 cyclooxygenase-2 (COX-2)의 단백질 발현을 감소시키는 것을 확인하였다. 이러한 결과들을 통해 미나리 발효 식초는 지방세포 분화와 염증 억제 효과를 가지고 있음을 확인하였다. 따라서 미나리 발효 식초는 대사성 질환을 예방할 수 있는 천연물 소재로 이용 가능할 것으로 생각된다.

Effect of saccharin on inflammation in 3T3-L1 adipocytes and the related mechanism

  • Kim, Hye Lin;Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • 제14권2호
    • /
    • pp.109-116
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Excessive intake of simple sugars induces obesity and increases the risk of inflammation. Thus, interest in alternative sweeteners as a sugar substitute is increasing. The purpose of this study was to determine the effect of saccharin on inflammation in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were differentiated into adipocytes. The adipocytes were treated with saccharin (0, 50, 100, and 200 ㎍/mL) for 24 h. Inflammation was induced by exposure of treated adipocytes to lipopolysaccharide (LPS) for 18 h and cell proliferation was measured. The concentration of nitric oxide (NO) was measured by using Griess reagent. Protein expressions of nuclear factor kappa B (NF-κB) and inhibitor κB (IκB) were determined by western blot analysis. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) were determined by real-time PCR. RESULTS: Compared with the control group, the amount of NO and the mRNA expression of iNOS in the LPS-treated group were increased by about 17.6% and 46.9%, respectively, (P < 0.05), and those parameter levels were significantly decreased by saccharin treatment (P < 0.05). Protein expression of NF-κB was decreased and that of IκB was increased by saccharin treatment (P < 0.05). Saccharin decreased the mRNA expression of COX-2 and the inflammation cytokines (IL-1β, IL-6, MCP-1, and TNF-α) (P < 0.05). CONCLUSIONS: The results of this study suggest that saccharin can inhibit LPS-induced inflammatory responses in 3T3-L1 adipocytes via the NF-κB pathway.

Obesity Exacerbates Coxsackievirus Infection via Lipid-Induced Mitochondrial Reactive Oxygen Species Generation

  • Seong-Ryeol Kim;Jae-Hyoung Song;Jae-Hee Ahn;Myeong Seon Jeong;Yoon Mee Yang;Jaewon Cho;Jae-Hyeon Jeong;Younggil Cha;Kil-Nam Kim;Hong Pyo Kim;Sun-Young Chang;Hyun-Jeong Ko
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.19.1-19.20
    • /
    • 2022
  • Coxsackievirus B3 (CVB3) infection causes acute pancreatitis and myocarditis. However, its pathophysiological mechanism is unclear. Here, we investigated how lipid metabolism is associated with exacerbation of CVB3 pathology using high-fat diet (HFD)-induced obese mice. Mice were intraperitoneally inoculated with 1×106 pfu/mouse of CVB3 after being fed a control or HFD to induce obesity. Mice were treated with mitoquinone (MitoQ) to reduce the level of mitochondrial ROS (mtROS). In obese mice, lipotoxicity of white adipose tissue-induced inflammation caused increased replication of CVB3 and mortality. The coxsackievirus adenovirus receptor increased under obese conditions, facilitating CVB3 replication in vitro. However, lipid-treated cells with receptor-specific inhibitors did not reduce CVB3 replication. In addition, lipid treatment increased mitochondria-derived vesicle formation and the number of multivesicular bodies. Alternatively, we found that inhibition of lipid-induced mtROS decreased viral replication. Notably, HFD-fed mice were more susceptible to CVB3-induced mortality in association with increased levels of CVB3 replication in adipose tissue, which was ameliorated by administration of the mtROS inhibitor, MitoQ. These results suggest that mtROS inhibitors can be used as potential treatments for CVB3 infection.

비만 환경 내 면역세포 활성화 표현형의 변화 (Phenotype Changes in Immune Cell Activation in Obesity)

  • 박주휘;남주옥
    • 생명과학회지
    • /
    • 제33권3호
    • /
    • pp.295-303
    • /
    • 2023
  • 면역 체계와 대사 체계는 항상성을 유지하는데 중요한 요소이다. 면역 반응과 대사 조절은 연관성이 높아, 정상적인 대사가 교란되면 대사 질환이 발생하며, 면역 반응에도 변화가 발생하였다. 마찬가지로, 비만은 면역 반응과 높은 관련이 있다. 에너지 대사의 불균형으로 발생하는 비만은 인슐린 저항성, 제2형 당뇨병, 지방간 질환, 동맥경화증, 고혈압 등의 대사 질환과 관련이 있다. 알려진 바로는, 비만은 낮은 수준의 염증이 만성화된 상태가 특징이다. 비만 환경에서, 면역세포의 미세 환경은 대식세포, 자연살해세포, T세포 같은 면역세포의 독특한 활성화 표현형에 의해 염증성이 되었다. 또한, 면역 세포는 세포 간의 기전, 사이토카인을 매개하는 기전을 통해 상호작용하여 비만으로 인한 염증 반응을 강화한다. 이러한 현상은 기존의 췌장 리파아제나 알파-아밀라아제 같은 체내 효소의 억제나 지방전구세포의 분화를 억제를 표적으로 하는 일반적인 비만의 약리학적 치료 외에 면역세포 활성화 조절을 표적으로 하는 비만의 약리학적 치료 전략을 시사한다. 본 논문에서는 대식세포, 자연살해세포, T세포의 활성화 표현형과 비만 환경 내이들의 양상에 대해 정리하였다. 또한, 본 논문에서는 현재까지 확인된 면역세포의 활성화 조절을 통한 비만을 완화하는 약리학적 물질에 대해서 정리하였다.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.