• Title/Summary/Keyword: OXA

Search Result 84, Processing Time 0.028 seconds

Synthetic Studies on Carbapenam Skeletons

  • 구양모;서민효;이윤영
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.909-918
    • /
    • 1996
  • Syntheses of carbapenam skeletons were achieved from 1,3-propanediol through 1,3-dipolar cycloaddition. 3-(Tetrahydropyran-2-yloxy)-(10) and 3-(t-butyldimethylsilyloxy) propanal (13) were obtained from 1,3-propanediol. 3-Hydroxypropanals (10, 13, 14) were reacted with N-hydroxyglycine esters to give C-(2-hydroxyethyl)-N-alkoxycarbonylmethylnitrones (15a-15d). 1,3-Dipolar cycloaddition of the nitrones with methyl acrylate or ethyl crotonate gave 3-(2-hydroxyethyl)isoxazolidines (16a-16b, 17a-17b, 18, 19a-19b). 3-(2-Hydroxyethyl)isoxazolidines (17a, 17c, 19a, 19b) were converted to 3-(2-iodoethyl)isoxazolidines (21a-21d) or 3-phenylthiocarbonylmethylisoxazolidines (25a-25d) which were cyclized to give 2-oxa-1-azabicyclo[3.3.0]octanedicarboxylates (22a-22d, 26a-26d). 2-Oxa-1-azabicyclo[3.3.0]octane-4,8-dicarboxylates (22c-22d, 26c-26d) were transformed to 6-(l-hydroxyethyl)carbapenam-3-carboxylates (30a-30b, 31a-31b).

Laser Induced Fluorimetry IV. Determination of N-Methylcarbamates by 7-Chloro-4-Nitrosobenz-2-Oxa-1,3-Diazole

  • Park, Chan-Seung;Hwang, Kil-Nam;Kim, Ha-Suck;Koh, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.411-414
    • /
    • 1989
  • A new sensitive fluorimetric method for the determination of N-methylcarbamates, a class of well known insecticides, based on the derivatization with 7-chloro-4-nitrosobenz-2-oxa-1,3-diazole (NBD-Cl) has been developed. Unreacted NBD-Cl was eluted ahead of derivatized carbamates from C-18 bonded column. An argon ion laser was used as an excitation source of chromatographic eluents and its fluorescence signal was monitored with optical multichannel analyzer. The detection limits of various carbamates were about 100 pg range and the working curves were linear to $10^4-10^5$ nanogram ranges.

Patterns of Antimicrobial Resistance and Genotyping of Carbapenemase-producing Imipenem-nonsusceptible Pseudomonas aeruginosa (Imipenem 비감수성 Carbapenemase 생성 Pseudomonas aeruginosa에 의한 항생제 내성유형과 분자생물학적인 특성)

  • Lee, Jin-Hee;Lee, Gyusang;Lim, Kwanhun;Eom, Yong-Bin;Kim, Shin-Moo;Kim, Jong-Bae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.2
    • /
    • pp.71-80
    • /
    • 2010
  • Pseudomonas aeruginosa are important nosocomial pathogens. Their resistance to carbapenem is increasing and causing concerns in Korea. An increasing prevalence of carbapenem resistance mediated by acquired carbapenemase is being reported. Over a 10 month-period from July 2007 to April 2008, 32 strains of imipenem-nonsusceptible P. auruginosa were isolated from Kangwon National University Hospital. To determine the prevalence and genotypes of the carbapenemase-producing clinical isolates, the antibiotic susceptibility was determined by Microscan Walkaway 96 SI System and the carbapenem activity was detected by the modified Hodge test and the imipenem-EDTA-SMA double-disk synergy test. The metallo-${\beta}$-lactamase gene and OXA-type ${\beta}$-lactamase gene reported in Korea were detected by PCR. As for the result of PCR, 30 isolates of P. aeruginosa were found to have $bla_{IMP-1}$-like and 1 isolate was found to have $bla_{IMP-1}$-like and $bla_{IMP-2}$. No clinical isolates were found to have $bla_{SIM-1}$, $bla_{OXA-23}$-like and $bla_{OXA-24}$-like. Random amplified polymorphic DNA (RAPD)-PCR and dendrogram for genetical similarity to band patterns of each clinical isolates were examined. P. aeruginosa were grouped into 7 clusters of up to 50% of similarity index. In the P. aeruginosa group, PS3 was resistant to the most antibiotics, PS1 was susceptible to the most antibiotics. PS7 was resistant to aztreonam unlike other groups. This is the first report of prevalence of carbapenemase in Chuncheon.

  • PDF

Persistence of Multidrug-Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 and bap for 5 Years

  • Sung, Ji Youn;Koo, Sun Hoe;Kim, Semi;Kwon, Gye Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1481-1489
    • /
    • 2016
  • The emergence and dissemination of carbapenemase-producing Acinetobacter baumannii isolates have been reported worldwide, and A. baumannii isolates harboring blaOXA-23 are often resistant to various antimicrobial agents. Antimicrobial resistance can be particularly strong for biofilm-forming A. baumannii isolates. We investigated the genetic basis for carbapenem resistance and biofilm-forming ability of multidrug-resistant (MDR) clinical isolates. Ninety-two MDR A. baumannii isolates were collected from one university hospital located in the Chungcheong area of Korea over a 5-year period. Multiplex PCR and DNA sequencing were performed to characterize carbapenemase and bap genes. Clonal characteristics were analyzed using REP-PCR. In addition, imaging and quantification of biofilms were performed using a crystal violet assay. All 92 MDR A. baumannii isolates involved in our study contained the blaOXA-23 and bap genes. The average absorbance of biomass in Bap-producing strains was much greater than that in non-Bap-producing strains. In our study, only three REP-PCR types were found, and the isolates showing type A or type B were found more than 60 times among unique patients during the 5 years of surveillance. These results suggest that the isolates have persisted and colonized for 5 years, and biofilm formation ability has been responsible for their persistence and colonization.

Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Park Kwang-Ok;An Young-Jun;Sohn Seung-Ghyu;Jang Seon-Ju;Sung Kwang-Hoon;Yang Ki-Suk;Lee Kyung-Won;Young Dong-Eun;Lee Sang-Hee
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.423-431
    • /
    • 2006
  • Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.

Analysis of Integron-Associated Multi-Drug Resistance of Acinetobacter baumannii Isolated in Korea (국내에서 분리된 Acinetobacter baumannii의 Integron과 연관된 다제내성 분석)

  • Kim, Seong-Hwan;Choi, Ji-Hye;Park, Eun-Jin;Suh, In-Won;Son, Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.303-307
    • /
    • 2010
  • Acinetobacter baumannii 1625, a clinical isolate identified by Vitek and 16S rDNA sequence, showed an extended resistance to most ${\beta}$-lactams including imipenem, kanamycin, gentamicin, tobramycin, and cephalosporins of the third and fourth generations, and produced metallo-${\beta}$-lactamase (MBL) of IMP-1 type which is rare in Korea. The isolate contained a class 1 integron of about 2.5 kb in size and the integron included accA4 (aminoglycoside resistance gene), $bla_{IMP-1}$ (carbapenem resistance gene), and $bla_{OXA-2}$ (extended-spectrum ${\beta}$-lactam resistance gene) gene cassettes in order. The coexistence of IMP-1 type and OXA-2 type ${\beta}$-lactamase gene cassettes in an integron has not been reported in Korea. The transformed integron rendered the E. coli transformant resistant more than eight folds against imipenem, ampicilin, piperacillin, cefazolin, cefoperazone, and aztreonam comparing to the reference strain. This study clearly showed that the extended multi-drug resistance of A. baumannii 1625 was mainly due to the integron.

Prevalence of Multi-drug Resistant Acinetobacter baumannii Producing OXA-23-like from a University Hospital in Gangwon Province, Korea

  • Jang, In-Ho;Lee, Gyu-Sang;Choi, Il;Uh, Young;Kim, Sa-Hyun;Park, Min;Woo, Hyun-Jun;Choi, Yeon-Im;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • Acinetobacter infections are of great concern in clinical settings because of multi-drug resistance (MDR) and high mortality of the infected patients. The MDR Acinetobacter baumannii has emerged as a significant infectious agent in hospitals worldwide. The purpose of this study was to determine for molecular characterization of MDR A. baumannii clinical isolates obtained from the Wonju Christian Hospital in Gangwon province of Korea. A total of seventy nonduplicate A. baumannii isolates were collected from the Wonju Christian Hospital in Korea from March to April in 2011. All of the MDR A. baumannii isolates were encoded by $bla_{OXA-23-like}$ gene and all isolates with the $bla_{OXA-23-like}$ gene had the upstream element ISAba1 to promote increased gene expression and subsequent resistance to carbapenem. 16S rRNA methylase gene (armA) was detected in 44 clinical isolates which were resistant to amikacin, and phosphotransferase genes encoding aac(3)-Ia and aac(6')-Ib were the most prevalent. A combination of 16S rRNA methylase and aminoglycoside-modifying enzyme genes (armA, aac(3)-Ia, aac(6')-Ib, and aph(3')-Ia) were found in 31 isolates. The sequencing results for the quinolone resistance-determining region (QRDR) of gyrA and parC revealed the presence of Ser (TCA) 83 Leu (TTA) and Ser (TCG) 80 Leu (TTG) substitutions in the respective enzymes for all MDR. Molecular typing for MDR A. baumannii could be helpful in confirming the identification of a common source or cross-contamination. This is an important step in enabling epidemiological tracing of these strains.

Selective Silylation Reaction of Aldehydes with 1,1'-Bis(dimethylsilyl)ferrocene in the Presence of Ni/Pt Catalyst (니켈/백금 촉매에 의한 1,1'-Bis(dimethylsilyl)ferrocene과 Aldehydes의 선택적 Silylation 반응)

  • Kim, Jin-Sik;Choi, Sung-Keun;Lee, Jung-Hyun;Kong, Young-Kun
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.232-239
    • /
    • 2007
  • The reaction of 1,1'-bis(dimethylsilyl)ferrocene with various aldehydes in the presence of a catalytic amount of Ni(PEt3)4 lead to the acyclic products by monohydrosilylation. The same reaction in the presence of a catalytic amount of (C2H4)Pt(PPh3)2 leads to the different cyclic six membered ring compound by double silylation. Platinum catalyzed double silylation of 4-cyanobenzaldehyde was generated 5,6-ferrocenylene-1,1,4,4,-tetramethyl-2-oxa-2- cyanophenyl-1,4-disylacyclehexane which was crystallized to have crystal structure.

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.