• Title/Summary/Keyword: OTSU

Search Result 148, Processing Time 0.02 seconds

A Multi-thresholding Approach Improved with Otsu's Method (Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법)

  • Li Zhe-Xue;Kim Sang-Woon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.29-37
    • /
    • 2006
  • Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding employed the normalized histogram as a discrete probability density function. Also it utilized a criterion that minimizes the between-class variance of pixel intensity to choose a threshold value for segmentation. However, the Otsu's method has a disadvantage of repeatedly searching optimal thresholds for the entire range. In this paper, a simple but fast multi-level thresholding approach is proposed by means of extending the Otsu's method. Rather than invoke the Otsu's method for the entire gray range, we advocate that the gray-level range of an image be first divided into smaller sub-ranges, and that the multi-level thresholds be achieved by iteratively invoking this dividing process. Initially, in the proposed method, the gray range of the object image is divided into 2 classes with a threshold value. Here, the threshold value for segmentation is selected by invoking the Otsu's method for the entire range. Following this, the two classes are divided into 4 classes again by applying the Otsu's method to each of the divided sub-ranges. This process is repeatedly performed until the required number of thresholds is obtained. Our experimental results for three benchmark images and fifty faces show a possibility that the proposed method could be used efficiently for pattern matching and face recognition.

A Study on Face Recognition Based on Modified Otsu's Binarization and Hu Moment (변형 Otsu 이진화와 Hu 모멘트에 기반한 얼굴 인식에 관한 연구)

  • 이형지;정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1140-1151
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu's binarization and Hu moment. Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. As the proposed modified Otsu's binarization computes other thresholds from conventional Otsu's binarization, namely we create two binary images, we can extract higher dimensional feature vector. Here the feature vector has properties of robustness to brightness and contrast changes because the proposed method is based on Otsu's binarization. And our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. In the perspective of brightness, contrast, scale, rotation, and translation changes, experimental results with Olivetti Research Laboratory (ORL) database and the AR database showed that average recognition rates of conventional well-known principal component analysis (PCA) are 93.2% and 81.4%, respectively. Meanwhile, the proposed method for the same databases has superior performance of the average recognition rates of 93.2% and 81.4%, respectively.

A Computational Improvement of Otsu's Algorithm by Estimating Approximate Threshold (근사 임계값 추정을 통한 Otsu 알고리즘의 연산량 개선)

  • Lee, Youngwoo;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2017
  • There are various algorithms evaluating a threshold for image segmentation. Among them, Otsu's algorithm sets a threshold based on the histogram. It finds the between-class variance for all over gray levels and then sets the largest one as Otsu's optimal threshold, so we can see that Otsu's algorithm requires a lot of the computation. In this paper, we improved the amount of computational needs by using estimated Otsu's threshold rather than computing for all the threshold candidates. The proposed algorithm is compared with the original one in computation amount and accuracy. we confirm that the proposed algorithm is about 29 times faster than conventional method on single processor and about 4 times faster than on parallel processing architecture machine.

A Study on Image Segmentation Method Based on a Histogram for Small Target Detection (소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구)

  • Yang, Dong Won;Kang, Suk Jong;Yoon, Joo Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1305-1318
    • /
    • 2012
  • Image segmentation is one of the difficult research problems in machine vision and pattern recognition field. A commonly used segmentation method is the Otsu method. It is simpler and easier to implement but it fails if the histogram is unimodal or similar to unimodal. And if some target area is smaller than background object, then its histogram has the distribution close to unimodal. In this paper, we proposed an improved image segmentation method based on 1D Otsu method for a small target detection. To overcome drawbacks by unimodal histogram effect, we depressed the background histogram using a logarithm function. And to improve a signal to noise ratio, we used a local average value by the neighbor window for thresholding using 1D Otsu method. The experimental results show that our proposed algorithm performs better segmentation result than a traditional 1D Otsu method, and needs much less computational time than that of the 2D Otsu method.

Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation (영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할)

  • Roh, Seok-Beom;Ahn, Tae-Chon;Baek, Yong-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.368-374
    • /
    • 2010
  • Image segmentation is the basic step in the field of the image processing for pattern recognition, environment recognition, and context analysis. The Otsu's automatic threshold selection, which determines the optimal threshold value to maximize the between class scatter using the distribution information of the normalized histogram of a image, is the famous method among the various image segmentation methods. For the automatic threshold selection proposed by Otsu, it is difficult to determine the optimal threshold value by considering the sub-region characteristic of the image because the Otsu's algorithm analyzes the global histogram of a image. In this paper, to alleviate this difficulty of Otsu's image segmentation algorithm and to improve image segmentation capability, the original image is divided into several sub-images by using context fuzzy c-means algorithm. The proposed fuzzy Otsu threshold algorithm is applied to the divided sub-images and the several threshold values are obtained.

Otsu's method for speech endpoint detection (Otsu 방법을 이용한 음성 종결점 탐색 알고리즘)

  • Gao, Yu;Zang, Xian;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.40-42
    • /
    • 2009
  • This paper presents an algorithm, which is based on Otsu's method, for accurate and robust endpoint detection for speech recognition under noisy environments. The features are extracted in time domain, and then an optimal threshold is selected by minimizing the discriminant criterion, so as to maximize the separability of the speech part and environment part. The simulation results show that the method play a good performance in detection accuracy.

  • PDF

Obtaining Object by Using Optimal Threshold for Saliency Map Thresholding (Saliency Map을 이용한 최적 임계값 기반의 객체 추출)

  • Hai, Nguyen Cao Truong;Kim, Do-Yeon;Park, Hyuk-Ro
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • Salient object attracts more and more attention from researchers due to its important role in many fields of multimedia processing like tracking, segmentation, adaptive compression, and content-base image retrieval. Usually, a saliency map is binarized into black and white map, which is considered as the binary mask of the salient object in the image. Still, the threshold is heuristically chosen or parametrically controlled. This paper suggests using the global optimal threshold to perform saliency map thresholding. This work also considers the usage of multi-level optimal thresholds and the local adaptive thresholds in the experiments. These experimental results show that using global optimal threshold method is better than parametric controlled or local adaptive threshold method.

Fast Scene Change Detection Algorithm

  • Khvan, Dmitriy;Ng, Teck Sheng;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.259-262
    • /
    • 2012
  • In this paper, we propose a new fast algorithm for effective scene change detection. The proposed algorithm exploits Otsu threshold matching technique, which was proposed earlier. In this method, the current and the reference frames are divided into square blocks of particular size. After doing so, the pixel histogram of each block is generated. According to Otsu method, every histogram distribution is assumed to be bimodal, i.e. pixel distribution can be divided into two groups, based on within-group variance value. The pixel value that minimizes the within-group variance is said to be Otsu threshold. After Otsu threshold is found, the same procedure is performed at the reference frame. If the difference between Otsu threshold of a block in the current frame and co-located block in the reference frame is larger than predefined threshold, then a scene change between those two blocks is detected.

  • PDF

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Image Thresholding Based on Within-Class Standard Deviation (클래스 내 표준편차 기반의 문턱치 처리에 의한 영상분할)

  • Sung, Jung-Min;Ha, Ho-Gun;Choi, Bong-Yeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.216-224
    • /
    • 2013
  • The within-class variance of Otsu's method is moderate but improper in expressing class statistical distributions. Otsu's method uses a variance to represent the distribution of each class. The variance utilizes a distance square from the mean to a data. This process is not proper in denoting a real class statistical distribution because of the distance square. In this paper, to express more exact class statistical distributions, the within-class standard deviation as a criterion for threshold selection is proposed and then the optimal threshold is determined by minimizing it. In order to have validity, it is shown through the experimental results that the proposed method was more superior to the counterparts.