• Title/Summary/Keyword: OTFTs (Organic Thin Film Transistors)

Search Result 134, Processing Time 0.041 seconds

Organic Thin-Film Transistors with Polymer Buffer Layer (고분자 완충층을 이용한 유기박막트랜지스터)

  • Choi, Hak-Bum;Hyung, Gun-Woo;Park, Il-Houng;Hwang, Seon-Wook;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.182-183
    • /
    • 2008
  • We fabricated a pentacene thin film transistor with Poly-vinylalcohol (PVA) as a dielectric. And we used Poly(9-vinylcarbazole) (PVK) as a buffer layer to improve the electrical characteristics. PVK is a material used often host material for OLED device, as it has good film forming properties, large HOMO-LUMO(highest occupied molecular orbital-lowest unoccupied molecular orbital) bandgap. The performance of a OTFT device with PVA gate dielectric was improved by using the PVK. Field effect mobility, threshold voltage, and on-off current ratio of device with PVK layer were about 0.6 $cm^2$/Vs, -17V, and $5\times10^5$, respectively.

  • PDF

Modification of Dielectric Surface in Organic Thin-Film Transistor with Organic Molecule

  • Kim, Jong-Moo;Lee, Joo-Won;Kim, Young-Min;Park, Jung-Soo;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Oh, Myung-Hwan;Kim, Jong-Seung;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1030-1033
    • /
    • 2004
  • We herewith report for the effect of dielectric surface modification on the electrical characteristics of organic thin-film transistors (OTFTs). The kist-jm-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide ($ZrO_2$) gate dielectric layer. The OTFTs are elaborated on the flexible plastic substrates through 4-level mask process to yield a simple fabrication process. In this work, we also have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

Study on the Hydrogen Treatment Effect of Vacuum deposited Pentacene Thin Film Transistors

  • Lee, Joo-Won;Chang, Jae-Won;Kim, Hoon;Kim, Kwang-Ho;Kim, Jai-Kyeong;Kim, Young-Chul;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.668-672
    • /
    • 2003
  • In order to reach the high electrical quality of organic thin film transistors (OTFTs) such as high mobility and on-off current ratio, it is strongly desirable to study the enhancement of electrical properties in OTFTs. Here, we report the novel method of hydrogen $(H_{2})$ plasma treatment to improve electrical properties in inverted staggered OTFTs based on pentacene as active layer. To certify the effect of this method, we compared the electrical properties of normal device as a reference with those of device using the novel method. In result, the normal device as a reference making no use of this method exhibited a field effect mobility of 0.055 $cm^{2}/Vs$, on/off current ratio of $10^{3}$, threshold voltage of -4.5 V, and subthreshold slope of 7.6 V/dec. While the device using the novel method exhibited a field effect mobility of 0.174 $cm^{2}/Vs$, on/off current ratio of $10^{6}$. threshold voltage of -0.5 V, and subthreshold slope of 1.49 V/dec. According to these results, we have found the electrical performances in inverted staggered pentacene TFT owing to this novel method are remarkably enhanced. So, this method plays a key role in highly improving the electric performance of OTFTs. Moreover, this method is the first time yet reported for any OTFTs

  • PDF

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막 트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;심재훈;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.247-250
    • /
    • 2001
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. We have fabricated organic thin film transistors(OTFTs) and discuss electrical characteristics of the devices. For the gate dielectric layer, OPTMER PC403 photoacryl(JSR Co.) was spin-coated and cured at 220$^{\circ}C$. Electrical characteristics of the device were investigated, where the photoacryl dielectric layer thickness and pentacene active layer thickness were about 0.6$\mu\textrm{m}$ and 800${\AA}$.

  • PDF

Array of Pentacene TFTs for AMOLED

  • Choe, Ki-Beom;Jung, Hyun;Ryu, Gi-Seong;Xu, Yong-Xian;Lee, Jae-June;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1424-1427
    • /
    • 2005
  • In this paper, we studied on the application of Organic Thin Film Transistors (OTFTs) to the active matrix organic light emitting diodes (AMOLED). We designed organic transistor based pixel circuits for AMOLED. The pixel circuit is consisted of two-transistor, one-capacitor and one-OLED. We report the simulation results of the pixel circuits that OLED current varied as the data line and scan line voltage. Also, we will describe the fabrication process of the Pentacene OTFTs arrays and the organic light emitting diodes. The driving results of the fabricated unit pixels and their 4x4 arrays are also presented.

  • PDF

Iodine Doping of Pentacene and its Electrical Properties

  • Rahim, Abdur;Lee, Young-Kyu;Lee, Chi-Young;Lee, Jae-Gab
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.2-238.2
    • /
    • 2011
  • Organic thin film transistors (OTFTs) have been attracting considerable attention because of their potential use in low-cost, large area, electronic devices such as flexible displays, biochemical sensors, and smart cards. In past several years, gold/pentacene has been frequently used in OTFTs because of the high mobility of pentacene and the high work function of gold. To improve the performance of the OTFTs contact area doping of pentacene with p-doping materials are well known. In this work we demonstrated selectively contact area doping of pentacene with Iodine vapor. For effective doping elevated pentacene layer under the source-drain area was deposited and exposed to Iodine vapor. We got better electrical performance for elevated pentacene structure rather than planer structure with relatively high field-effect mobility.

  • PDF

Enhanced Performance of Solution-Processed n-channel Organic Thin Film Transistor with Electron-Donating Injection Layer

  • Kim, Sung-Hoon;Lee, Sun-Hee;Han, Seung-Hoon;Choi, Min-Hee;Jeong, Yong-Bin;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.64-66
    • /
    • 2009
  • We obtained high performance of n-type organic thin film transistors (OTFTs) using a solution process. N, N' bis-(octyl-)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-$8CN_2$) in ambient air. Low work function interlayer on source/drain is needed to enhance the electron injection to low LUMO level of n-type organic semiconductor. By using self-assembled monolayer (SAM) the field-effect mobility of 0.33 $cm^2$/Vs was achieved.

  • PDF

The Effect of Thermal Annealing Process on Fermi-level Pinning Phenomenon in Metal-Pentacene Junctions

  • Cho, Hang-Il;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.290.2-290.2
    • /
    • 2016
  • Recently, organic thin-film transistors have been widely researched for organic light-emitting diode panels, memory devices, logic circuits for flexible display because of its virtue of mechanical flexibility, low fabrication cost, low process temperature, and large area production. In order to achieve high performance OTFTs, increase in accumulation carrier mobility is a critical factor. Post-fabrication thermal annealing process has been known as one of the methods to achieve this by improving the crystal quality of organic semiconductor materials In this paper, we researched the properties of pentacene films with X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM) analyses as different annealing temperature in N2 ambient. Electrical characterization of the pentacene based thin film transistor was also conducted by transfer length method (TLM) with different annealing temperature in Al- and Ti-pentacene junctions to confirm the Fermi level pinning phenomenon. For Al- and Ti-pentacene junctions, is was found that as the surface quality of the pentacene films changed as annealing temperature increased, the hole-barrier height (h-BH) that were controlled by Fermi level pinning were effectively reduced.

  • PDF

Photoinitiator-free Photosensitive Polyimide Gate Insulator for Organic Thin Film Transistor

  • Pyo, Seung-Moon;Lee, Moo-Yeol;Jeon, Ji-Hyun;Son, Hyun-Sam;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.885-888
    • /
    • 2004
  • We have prepared and investigated the properties of photoinitiator-free photosensitive polyimide gate insulatos for organic thin-film transistors (OTFTs). The precursor was prepared from a dianhydride, 3,3',4,4'-Benzophenone tetracarboxylic dianhydride (BTDA) and novel aromatic diamine, 7-(3,5-diaminobenzoyloxy) coumarine (DA-CM). Photo-patternability of the polyimide precursor film and surface morphology of the films before and after photo-patterning process were investigated and negative pattern with a resolution of 50 ${\mu}m$ was obtained nicely. In addition, we have fabricated OTFTs with pentacene and photosensitive polyimide as a semiconductor and a gate insulator; respectively. According to the device geometry, the ${\mu}$, current modulation ratio and subthreshold swing of the devices were around 0.2${\sim}$0.4 $cm^2$/Vs, more than $10^5$ and around 3${\sim}$5 V/dec, respectively.

  • PDF

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.